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Lecture II 
 

Simple One-Dimensional Vibrating Systems 
 

     One method of producing a sound relies on a physical object (e.g. various types of musical 
instruments – stringed and wind instruments in particular) to be made to vibrate, by whatever 
means possible.  This vibration is (clearly) mechanical in nature.  
 

     Mechanical vibration explicitly means a displacement of the (at least some portions of the) 
matter/material the object is comprised of from its equilibrium position/configuration – which 
requires the input of energy to the object in order to accomplish this – initially in the form of 
(static) potential energy (P.E.) , which as time progresses, is subsequently transformed into 
kinetic (motional) energy (K.E.). As time progresses further, the energy oscillates back and forth 
between potential and kinetic energy, the total energy, Etot = P.E.(t) + K.E.(t) remaining constant 
in time, if no energy losses (energy dissipation processes) are present in the mechanical system. 
 

     The mechanically vibrating object couples to the air surrounding it, transferring energy in this 
process - sound waves in the air are created, which propagate outwards from the source (the 
vibrating object) to an observer’s ear(s).  Thus a sound is heard (perceived). Thus, by energy 
conservation, some of the initial energy input to the mechanically vibrating system is radiated 
away in the form of sound energy. Eventually the mechanically vibrating system ceases to do so, 
because of this, and other (frictional) dissipative energy loss mechanisms present. 
 

     A simple example of a vibrating system is a mass on a spring (a crude model of a vibrating 
musical instrument) which undergoes so-called 1-D simple harmonic motion: 

 
 
 
 

x = 0

x = 0

x = +Xo 

x = +xo x = xo 

x = 0
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     If there is no friction, and the mass M is horizontally displaced from its equilibrium (x = 0) 
position by pulling on it to the right, as shown in the above figure, the force necessary to 
accomplish this is I oF kx   (Hooke’s Law), where k > 0 is the so-called “spring constant” of the 

spring (k has metric units of Newtons/meter) and xo = the initial displacement of the mass M from 
its x = 0 equilibrium position. 
 

     At time t = 0 the mass is released. At that instant, the only force acting on the mass is due to 

the {horizontal} restoring force of the spring:  0S o IF t kx F     . However, from 

Newton’s 2nd Law:    F t Ma t , therefore at time t = 0:    0 0S oF t kx Ma t     . 
 

     As time progresses the mass M oscillates horizontally back and forth about its x = 0 
equilibrium position, exhibiting sinusoidal/harmonic motion. Mathematically, the time-
dependence of this horizontal sinusoidal/harmonic motion is described by: 
 

Longitudinal displacement from equilibrium:              (m)  
 
         (meters)  displacement                  frequency of oscillation 
                                                                                                                                amplitude (meters)        (cycles per second = Hertz) 
                                                                                                                                                                             cps                       Hz 
 

Omega:   
 
 
Period of oscillation:       (seconds) 
 
 

     The instantaneous horizontal speed of the moving mass v(t) with time t is defined as the time 
rate of change of the horizontal position (longitudinal displacement) of the moving mass with 
time t, physically, v(t) is the instantaneous local slope of the x(t) vs. t graph at time t: 
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We see that:   
 
 

 i.e. the speed “amplitude”, vo = max speed is related to the 
displacement amplitude, xo by this formula for harmonic motion. 

 

Instantaneous Horizontal Speed of the Moving Mass:         ( )m s  
 
          (meters/sec)    speed                   frequency of oscillation 
                                amplitude (m/s)      (cycles per second = Hertz) 
 

The instantaneous horizontal acceleration of the moving mass a(t) with time t is defined as the 
time rate of change of the horizontal speed of the moving mass with time t, physically, a(t) is the 
instantaneous local slope of the v(t) vs. t graph at time t: 

   ( ) cos 2 coso ox t x ft x t    

   ( ) sin 2 sino ov t v ft v t    

1 2

f




   

2  o o ov x f x      

2 f  = angular frequency (units = radians per second) 

 sign defines the phase relation between 
velocity v(t) relative to displacement x(t). 
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( )

v t dv t
a t
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
  


total derivative of v(t) with respect to time, t. 

 

         ( ) ( ) sin 2 2  cos 2 cos coso o o o

d d
a t v t v ft f v ft v t a t

dt dt
             

 
We see that:              but:              
 
 

 i.e. the  acceleration  amplitude, Ao = max acceleration is related to the 
displacement amplitude, Xo by this formula for harmonic motion. 

 

Instantaneous Horizontal Accel. of the Moving Mass:            ( )2m s  

 
          (meters/sec2)  acceleration              frequency of oscillation 
                                  amplitude (m/s2)      (cycles per second = Hertz) 
 

     The time dependence of the longitudinal position, x(t) (i.e. displacement of the mass from its 
equilibrium position) vs. time, t and longitudinal speed of the mass, v(t) vs. time, t and 
longitudinal acceleration a(t) vs. time, t are shown in the figure below; note that each has been 
normalized to their respective amplitudes (note also the phase relation between x(t), v(t) and a(t)): 
 

 
 
 

   ( ) cos 2 coso oa t a ft a t    

2  o o oa v f v    2  o o ov x f x       22 2o o oa x f x      
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Once the mass M has been set in motion, Newton’s 2nd Law tells us that:      F t kx t Ma t    

 
However:               and:  
 
 

And from above, we also know that:              2
o okx Mx    

  

Thus, the frequency f and angular frequency  of oscillation of the mass M on the spring are: 
  

 
                  and     (radians/sec)                                     
 
 
The period of oscillation   of the mass M on the spring is:                                     (seconds) 
 
 

Note also that since the instantaneous acceleration      2

2

dv t d x t
a t

dt dt
  , then we can write 

Newton’s 2nd law for this system as a differential equation: 
 

     F t kx t Ma t          2

2

d x t
kx t M

dt
    or: 

   
2

2
0

d x t
M kx t

dt
   or:     0M x t kx t   

which is a linear, homogenous 2nd-order differential equation, and where:                2

2

d x t
x t

dt
 . 

 

The instantaneous potential energy stored in the stretched/compressed spring is: 
 

 
            (Joules) 
 
 

The instantaneous kinetic energy associated with the moving mass, M is: 
 

 
      (Joules) 
 
 

The potential energy of the spring and the kinetic energy of the moving mass are both time 
dependent: 
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However, since:                          and:      thus:     Hence, we see that: 
  

 
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2 2 2

2 2 2 2 2 2 2 2

1 1
. .( ) ( ) cos

2 2
1 1 1 1

. .( ) ( ) sin sin sin
2 2 2 2

o

o o o

P E t kx t kx t

K E t Mv t Mv t M x t kx t



   

 

   
 

 
Let us define:     Then: 
 
 
We define the total energy, Etot(t) as the sum of instantaneous potential + kinetic energies: 
 
  
 

Using the trigonometric identity 2 21 cos sinx x   we see that: 
 

    2 2 21 1

2 2Tot o o oE t E kx M x    = constant  0 , independent of time! 

 

Thus, the total energy in (spring + mass) system is constant – due to conservation of energy!! 
 

Graphs of  P.E.(t), K.E.(t), and Etot(t) vs. time (all normalized to Eo) are shown in the figure below: 
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Note that P.E.(t), K.E.(t) and Etot(t) are always   0 (i.e. never negative)!!! 
 

Note further that energy/energies are additive, scalar quantities. 
 

A real vibrating spring – mass system suffers from various energy loss mechanisms: 
 * friction –  the mass M slides on surface, mass M also slides through viscous air 

* spring also dissipates energy internally each time it is flexed (another type of friction) 
 

* Thus, the motion of a real mass on a real spring is damped by frictional processes. 
* The original/initial energy, ( )tot oE t E=  = constant is dissipated by frictional processes.  

* The initial energy Eo ultimately winds up as heat (another form of energy) - thus the mass,    
    spring, horizontal surface and the air all heat up with time… 
 
     Mathematically, we can represent the effect(s) of frictional damping associated with a 1-D  
simple harmonic oscillator as a velocity-dependent (and hence time-dependent) force  dF t  

acting horizontally on the mass M, which opposes the motion, which, for the initial conditions of 

our problem, this damping force is given by:     dF t bv t   where b is a positive constant, 

known as the viscous damping coefficient, with SI units of kg/sec. 
 

     Then since      dx t
v t x t

dt
   , the equation of motion for the damped 1-D simple harmonic 

oscillator becomes: 
     

2

2
0

d x t dx t
M b kx t

dt dt
    or:       0M x t bx t kx t     

 

     We can rewrite this differential equation as:            0x t b M x t k M x t     and defining: 

the damping constant   2 0b M    and     

22 22k M f   , then our linear, 

homogeneous 2nd-order differential equation can also be written as:      22 0x t x t x t     .  

The general solution to this differential equation is of the form:   t
ox t x e .  

 

     Explicitly carrying out the time-differentiation we obtain:      2 22 0x t x t x t       

or: 2 22 0      which in turn is a quadratic equation in  , the solution for which has two 

roots: 
2 2

2 22 4 4

2

  
   

  
     .  

     When no damping is present ( 0  ), then:   2 0b M   , and thus: 2    .  
 

Defining 1i   , then for 0   we see that i   .  

Next, we use Euler’s complex relations for cosine and sine functions:  1
2cos i t i tt e e      

and  1
2sin i t i t

it e e    . For the no-damping situation, we already know (from above) what 

the solution must be for the 1-D harmonic motion, with our initial conditions: 

   1
2( ) cos i t i t

o ox t x t x e e     . 
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     Now suppose that a small amount of damping is present in the system. Mathematically this is 

represented by  2b M   , hence 2 2 2 2i       , with purely real 2 2 0   .  

We define 2 2 2      or equivalently 2 2 0      . Thus, for under-damped 1-D harmonic 

motion, with  0 2b M    , we see that 2 2 2 2i i                   , and 

thus the physical solution for under-damped 1-D harmonic motion, for our initial conditions is 

given by:    1
2( ) cost t t i t i t

o o ox t x e x e t x e e e             where the damping constant 

 0 2b M     and 2 20        . The motion is exponentially damped as time 

increases, with damping time constant  1 2d M b    (seconds), where the envelope of the 1-D 

oscillation falls to 11 0.3679e e   of its initial value at time  1 2dt M b     (seconds), as 

shown in the figure below: 

 

     Dissipative processes/friction tends to lower the frequency of oscillation of a vibrating 

system, as can be seen from the relation 2 20        . Small damping corresponds to a 

slight decrease in the oscillation frequency from its “natural” un-damped value of k M  .  
 

     If we now imagine slowly increasing the damping to “heavy” damping – eventually there will 
be no oscillation(s) at all! When   , the system is said to be critically damped, and    , 
and the corresponding critically-damped motion is a purely-decaying exponential with time: 

( ) t
ox t x e  . When   , the system is said to be over-damped, and 2 2 0   .  

Here, 2 2       , but the physical solution is:   22 2 1 1              .  

 

The over-damped motion is again a decaying exponential with time:  
 21 1 t

t
o ox t x e x e

  


    
   . 

Damping / dissipation affects the 
vibrational motion as time progresses: 

under-damped situation 

 ( ) cost
ox t x e t    

ox  

damping time constant 

 1 2d M b    

1   

0.38
o

o

x e

x




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     The following figure shows the effect of under-, critical and over-damping on the motion of 
 a 1-D harmonic oscillator system: 

 

     Note that damping processes that are operative in all musical instruments are in the under-damped 
regime (since by definition, to be musical, they must vibrate at frequencies > 0), typically with small 

amounts of damping, i.e.  , such that:  22 20 1           


. 
 

     A more realistic motion of a vibrating mass on spring is that associated with e.g. driving it 
with a periodic force (corresponding to a linear, inhomogeneous 2nd-order differential equation): 
 

- Have to get the mass moving first (initially at rest), takes a while for oscillations to build up 
- Takes a finite time to reach a steady state displacement amplitude xo 
- When switch off the driving force, displacement amplitude decays away, as shown below: 

     Slow attack – e.g. flute-like sound. Fast attack – e.g. more like trumpet/sax/etc.… type sounds 
Slow decay → large sustain (e.g. solid-body electric guitar). Fast decay → little sustain  
(e.g. acoustic and/or hollow-body, archtop-type jazz guitar). Fast  vs. slow attack & decay times 
are important aspects/attributes of the overall sound(s) produced by musical instruments! 
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