Sound waves propagate in a physical medium:

* gas, liquid or solid (and/or a plasma – the 4th state of matter @ very high temperature!)

* mass density of the medium ρ (= mass per unit volume) is important

* sound wave ("disturbance" = energy pulse) propagates in the medium with a characteristic speed of propagation v in that medium.

* propagation speed, v depends on density & elastic properties of the medium.

Simple model of (one-dimensional) medium:

![Diagram of one-dimensional medium](image1.png)

Crystalline metal – sound waves propagating in a 3-D lattice of atoms:

![Crystal lattice examples](image2.png)

- Fe, V, Nb, Cr
- Al, Ni, Ag, Cu, Au
- Ti, Zn, Mg, Cd
Longitudinal Sound Waves Propagating in 1-Dimension:

Displacement of atoms from equilibrium positions – *i.e.* compression/rarefaction is in/along/parallel to direction of propagation of soundwave

Longitudinal sound waves – in gases, liquids and solids (*i.e.* bulk materials)

Propagation of Longitudinal Waves in One Dimension as a Function of Time:

![Diagram of longitudinal waves propagating in one dimension](image)

Fig. 7. A longitudinal wave moving in the one-dimensional medium.
Tuning Fork Used to Generate 1-Dimensional Longitudinal Waves:

Displacement of atoms from equilibrium positions is perpendicular (i.e. transverse) to direction of propagation of wave.

Waves in a solid – e.g. a vibrating string (1-D), or a vibrating rectangular, triangular or circular sheet/membrane (2-D), a vibrating hollow box, pyramid, cylinder or sphere (3-D)!

Transverse Sound Waves Propagating in 1-Dimension:

Transverse Sinusoidal Traveling Wave in 1-Dimension:
Propagation of Transverse Waves on a Stretched String as a Function of Time:

Fig. 8. A transverse wave in a string.

Fig. 5. A transverse wave moving in the one-dimensional medium.
Propagation of Longitudinal Waves in an Air Column:

Fig. 9. Tuning fork attached to piston at the end of an air column.

FIG. 10. A longitudinal wave in an air column.

(displacement of air molecules from their equilibrium positions) & (over-pressure “pressure displacement” from equilibrium pressure – 1 Atm.)

n.b. Over-pressure and displacement of air molecules are 90° out of phase with each other!
A = displacement amplitude of wave = max displacement from equilibrium position (meters, m)

f = frequency of wave = number of complete cycles per second of wave
 (cycles per second = cps = Hertz, or Hz).

λ = “lambda” = spatial wavelength of wave – distance to complete one oscillation cycle
 (meters, m)

τ = “tau” = period of wave = time to complete one oscillation cycle = “temporal wavelength”
 (seconds (secs, or s)):

\[
\tau = \frac{1}{f}
\]

v = speed of propagation of wave (meters/second = m/s):

\[
v = f \lambda
\]

ω = “omega” = angular frequency (radians/second = rads/sec, or rads/s):

\[
\omega = 2\pi f, \quad f = \frac{\omega}{2\pi}
\]

k = spatial wave number (inverse meters, i.e. 1/meters = 1/m):

\[
k = \frac{2\pi}{\lambda}
\]

Hence, we also see that:

\[
v = f \lambda = 2\pi f \cdot \lambda / 2\pi = \omega / k
\]

Sinusoidal longitudinal wave propagation {in the +ve z-direction} (relevant e.g. for sound propagation in air/water) is mathematically described by:

\[
Z(z, t) = Z_o \sin \left(\omega t - kz \right)
\]

where z = listener’s position, Z_o = longitudinal displacement amplitude (i.e. along the direction of propagation) and $Z(z, t)$ is the instantaneous longitudinal displacement (i.e. longitudinal deviation) from the wave’s equilibrium position at the point z at time t.

Note that the argument of the sine function \((\omega t - kz)\) = constant. Thus, as time t increases, the position z must also increase – hence the name traveling wave. Hence, we also see that an argument of the sine function of the form \((\omega t + kz)\) = constant mathematically represents a traveling longitudinal displacement plane wave propagating in the −z direction: $Z(z, t) = Z_o \sin (\omega t + kz)$.

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.
The longitudinal speed of propagation v of transverse displacement traveling waves, where the displacement (from equilibrium position) is e.g. in the y-direction, perpendicular ($i.e.$ transverse) to the direction of propagation, e.g. in the $\pm z$-direction is mathematically described by:

$$Y(z,t) = Y_0 \sin \left(\omega t \mp kz \right)$$

for a transverse traveling plane wave propagating in the $\pm z$-direction.

For transverse waves propagating on a stretched string having tension, T ($n.b.$ the SI / metric units of tension T (= force) is Newtons, $N = kg \cdot m/s^2$), the string has mass M and length L, the longitudinal speed of propagation of transverse traveling waves on a string is given by:

$$v = \sqrt{\frac{T}{\mu}}$$

where: $\mu = \frac{M}{L}$ = mass per unit length of string (SI units: kg/m)

Example: Tension and Transverse {Standing} Waves on the High-E String of a Guitar:

$n.b.$ A standing wave = superposition of two traveling waves propagating in opposite directions!

The high-E string on a guitar has diameter, $D = 0.009" (\sim 230\mu m)$ ($0.001" = 1/1000" = 25.4\mu m$)

$L = \text{string length} = 63.5 \, \text{cm} = 0.635m$ = scale length e.g. of a Fender electric guitar

$\rho = \text{density of string} = 7.9 \, \text{gms/cm}^3 = 7900 \, \text{kg/m}^3$ for steel.

$A_\perp = \text{cross-sectional area of string} = \pi R^2 = \pi (D^2/4) = 4.104 \times 10^{-3} \, \text{cm}^2 = 4.104 \times 10^{-9} \, \text{m}^2$.

$V = \text{volume of string} = A_\perp \cdot L = \pi R^2 \cdot L = \pi (D^2/4) \cdot L = \pi D^2L/4 = 0.026 \, \text{cm}^3 = 0.026 \times 10^{-6} \, \text{m}^3$

Mass of string: $M = \rho V = \rho (A_\perp \cdot L) = \rho \left(\pi D^2L/4 \right) = 0.206 \, \text{gms} = 0.206 \times 10^{-3} \, \text{kg}$

$$\mu = \frac{M}{L} = \frac{\rho V}{L} = \frac{\rho (A_\perp \cdot L)}{L} = \rho \cdot A_\perp = \frac{0.206 \times 10^{-3} \, \text{kg}}{0.635m} = 3.242 \times 10^{-4} \, \text{kg/m}$$

Now $f_{\text{Hi-E}} = 332 \, \text{Hz}$ for open Hi-E string.

Thus, the longitudinal speed of transverse traveling waves on the Hi-E string of a guitar is:

$$v_{\text{Hi-E}} = f_{\text{Hi-E}} \cdot \lambda_{\text{Hi-E}} = 332 \, \text{Hz} \cdot 1.27 \, m = 421.6 \, \text{m/s}$$
Since \(v = \sqrt{T/\mu} \), the string tension \(T \) on the Hi-E string of the guitar is:

\[
T = \mu v^2 = (3.242 \times 10^{-4} \text{ kg/m}) \times (421.6 \text{ m/s})^2 = 57.6 \text{ kg-m/s}^2 = 57.6 \text{ N} \approx 12.95 \text{ lbs of force}.
\]

The typical string tension on a steel-stringed acoustic and/or electric guitar is \(T \sim 50 – 60 \text{ N} \).

\[\Rightarrow\] For steel 6 (12)-string guitar, total string tension is \(\sim 300 – 360 \text{ (600 – 720) } N \) !!!

PROPAGATION OF SOUND WAVES IN 2 & 3 DIMENSIONS

SOUNDWAVES EMANATING FROM A POINT SOURCE

A sound wave freely propagating in a gas = **longitudinal** compression/rarefaction of the gas.

Gives rise to a **longitudinal** displacement wave. If harmonic/sinusoidal in nature, far away from the sound source we have traveling plane waves, e.g. propagating in the + z-direction:

\[
\xi_z(z,t) = \xi_o \cos \left(\omega t - kz \right) = \text{mean (or avg.) longitudinal (i.e. z-) displacement of air molecules}
\]

and a corresponding **over-pressure** wave of the form: \(p(z,t) = P(z,t) - P_{am} \), where \(P(z,t) \) is the instantaneous absolute pressure, and \(P_{am} \) = atmospheric pressure = constant, typically \(\sim 14.7 \text{ psi} \approx 1.03 \times 10^5 \text{ Pascals (Pa)} \) at NTP (i.e. sea level and temperature \(T = 20 ^\circ \text{C} \)).

For a harmonic traveling plane wave, the instantaneous over-pressure is:

\[
p(z,t) = p_o \sin \left(\omega t - kz \right)
\]

Sound waves can propagate through elastic, compressible media as **longitudinal** waves.
The over-pressure \(p = P - P_{\text{atm}} = \Delta P \) required to compress a gas of initial volume \(V \) to \(V - \Delta V \) is:

\[
p = P - P_{\text{atm}} = \Delta P = -B \left(\frac{\Delta V}{V} \right)
\]

(Adiabatic) bulk modulus, \(B \) of fluid (here, a gas)

\(B \) is the so-called adiabatic bulk modulus, \(B = \frac{1}{\kappa} \) where \(\kappa = \text{compressibility of the fluid (liquid or gas)} \) – n.b. \(B \) has same SI units as pressure, \(p \) (from dimensional analysis of above formula).

Thus, we see that the adiabatic bulk modulus \(B \) of a fluid (liquid or gas) is the (negative) of the change in the \{over-pressure\} divided by the fractional change in the volume of the fluid due to the change in the over-pressure:

\[
B = \frac{-\Delta P}{(\Delta V/V)} \quad \text{(Pascals)}
\]

Now, for so-called adiabatic (i.e. slow) compression of a gas due to e.g. propagation of sound waves in the gas:

\(\gamma \) = “gamma” \(\equiv \frac{C_v}{C_p} = \text{Ratio of: specific heat of gas @ constant volume}{\text{specific heat of gas @ constant pressure}} \)

\(\gamma = 5/3 \) for monatomic gases (e.g. helium, neon, argon & xenon)

\(\gamma = 7/5 \) for diatomic gases (e.g. oxygen & nitrogen molecules – \(O_2 \) & \(N_2 \))

The Ideal Gas Law:

\[
P V = N R T
\]

Absolute temperature (degrees Kelvin)

Pressure Volume # Moles \(R = \text{universal gas constant} = 8.3145 \text{ (Joules/mole/deg.K)} \)
\(N/m^2 \) \(m^3 \) \(\text{of gas} \)

\(e.g. \) Carbon atom has 12 atomic mass units (amu’s), and thus 1 mole (mol) of carbon {having Avogadro’s number, \(N_A = 6.022 \times 10^{23} \text{ atoms/mole} \)} weighs 12 grams.

Now air @ NTP (a mixture of oxygen & nitrogen molecules, traces of argon, etc.) is NOT a perfect ideal gas – but is close to an ideal gas.

For the so-called adiabatic condition: \(P V^\gamma = \text{constant} = K \), thus: \(P = K V^{-\gamma} \)
Then for small pressure variations \(p = P - P_{\text{atm}} = \Delta P \ll P_{\text{atm}} \):
\(\Rightarrow (\Delta P / P) = -\gamma (\Delta V / V) \)

However, from above:
\(B = -\frac{\Delta P}{(\Delta V / V)} \).
Thus, we see that:
\(B = \gamma P = \gamma P_{\text{atm}} \) for \(p = P - P_{\text{atm}} \ll P_{\text{atm}} \).

For 1-D traveling plane waves:
\(p = \Delta P = -B (\Delta V / V) = -B \frac{\partial \xi_z(z,t)}{\partial z} \).

Thus, we see that there is a relation between overpressure \(p(z,t) \) and the local slope (i.e. the spatial gradient) of the longitudinal displacement \(\partial \xi_z(z,t) / \partial z \):

If longitudinal displacement: \(\xi_z(z,t) = \xi_o \cos(\omega t - kz) \) then:
\(p(z,t) = -B \frac{\partial \xi_z(z,t)}{\partial z} \) gives:

\[
p(z,t) = p(z,t) - P_{\text{atm}} = \Delta P(z,t) = -B \frac{\partial \xi_z(z,t)}{\partial z} = -Bk \xi_o \sin(\omega t - kz) = p_o \sin(\omega t - kz)
\]

Hence, we see that the over-pressure \(p(z,t) \) and the longitudinal displacement of air molecules from their equilibrium positions \(Z(z,t) \) are 90° out-of-phase with each other.

The (mean, or avg.) longitudinal speed of air molecules \(u_z(z,t) \) is the time rate of change of the (mean, or avg.) longitudinal displacement of air molecules, i.e. the time derivative \(\partial \xi_z(z,t) / \partial t \).

Thus, for a harmonic/sinusoidal sound wave in air, the instantaneous particle velocity is:

\[
u_z(z,t) = \frac{\partial \xi_z(z,t)}{\partial t} = -\omega \xi_o \sin(\omega t - kz) = u_o \sin(\omega t - kz)
\]

Thus, we also see that the longitudinal speed of air molecules \(u_z(z,t) \) and the overpressure \(p(z,t) \) are in-phase with each other for sound waves propagating in “free” air:

\[
p(z,t) = p_o \sin(\omega t - kz) = -B \frac{\partial \xi_z(z,t)}{\partial z} = -Bk \xi_o \sin(kz - \omega t) = -\frac{Bk}{\omega} \omega \xi_o \sin(kz - \omega t) = \frac{Bk}{\omega} u_z(z,t)
\]

A medium has a so-called **characteristic specific acoustic impedance** \(z_a(\vec{r}) \) associated with it at the listener point \(\vec{r} \) – which physically is a measure of how easy (or difficult) it is for (acoustic) energy to **flow** from one point to another in the medium. For **longitudinal** traveling acoustic plane waves propagating **freely** in a gas, the **characteristic longitudinal specific acoustic impedance** \(z_o^l(\vec{r}) \) is defined as (using \(v = \omega / k = f \lambda \), and \(B = \rho v^2 \) {see below...}):

\[
z_o^l(\vec{r}) \equiv p(\vec{r})/u_z(\vec{r}) = Bk / \omega = B / v = \rho v
\]

(IS units of \(z_o(\vec{r}) \): Pa-s/m = acoustic Ohms).

The **characteristic longitudinal specific acoustic impedance** for **air** is:

\[
z_o^{l,air}(\vec{r}) = \rho_o^{air} v_o^{air} = 1.204 \text{ kg} / \text{m}^3 \cdot 345 \text{ m/s} = 415 \text{ Pa-s/m} = 415 \Omega_{ac} = 415 \text{ Rayls} \@ \text{NTP}.
\]

Aka Rayls, in honor of Lord Rayleigh (John William Strutt)
Because $z_a^{\text{air}}(\vec{r}) = \rho^{\text{air}} v^{\text{air}}$, since both the mass density of air ρ^{air} and the longitudinal speed of propagation v^{air} have a slight temperature (and pressure-) dependences (as well as slight humidity dependences), $z_a^{\text{air}}(\vec{r})$ also has a slight temperature (and pressure-) dependence (as well as a slight humidity dependence) – see below….

The wave equation for describing propagation of longitudinal sound waves in a gas relates the speed of longitudinal sound propagation in the gas v (m/s) to the adiabatic bulk modulus of the gas B (in N/m2 = Pascals) and the gas density, $\rho = M/V$ (in kg/m3) by the following formula:

$$v = \sqrt{B/\rho}$$

From dimensional analysis:

\[SI \text{ units: } B/\rho = \frac{N}{m^2} \frac{kg/m^3}{kg/m^3} = \frac{m^2/s^2}{m^2/s^2} \text{ note: } 1 \text{ N} = 1 \text{ kg-m/s}^2 \]

Thus: $$v = \sqrt{B/\rho} = \sqrt{m^2/s^2} = m/s = \text{meters/second} = \text{dimensions of speed}$$

Now, since $B = \gamma P$ then: $$v = \sqrt{B/\rho} = \sqrt{\gamma P/\rho}$$

The gas density $\rho = \frac{M}{V} = \frac{M_{\text{molar}} n_{\text{mole}}}{V} = \frac{M_{\text{molar}} P}{RT}$ \{for an ideal gas, and using the ideal gas law\}

where $M_{\text{molar}} = \text{molar mass} (\text{kg/mol})$, and $n_{\text{mole}} = \# \text{ of moles of gas.}$

Then for an ideal gas: $$v = \sqrt{B/\rho} = \sqrt{\gamma P/\rho} = \sqrt{\gamma RT/M_{\text{molar}}}$$

Hence, e.g. the speed of sound in air has a temperature-dependence!

Normalizing to the so-called standard temperature (300K) and pressure (1 atm):

$$v_{\text{air}} \approx 330 \sqrt{T(\degree C) + 273} \frac{1}{273} = 330 + 0.6T(\degree C) \text{ (m/s)}$$

The latter relation was obtained using the Taylor-series expansion for $\sqrt{1+\varepsilon} = 1 + \frac{1}{2} \varepsilon$ for $\varepsilon << 1$ and keeping only the first non-trivial term in the Taylor-series expansion, which is linear in $\varepsilon = T(\degree C)/273K << 1$.

$v_{\text{air}} \approx 330 \text{ m/s} @ T = 0 \degree C$ (\@ $p = 1$ atm (i.e. at sea level))

$v_{\text{air}} \approx 340 \text{ m/s} @ T = 20 \degree C$ (\@ $p = 1$ atm (i.e. at sea level))
Thus, we see that the speed of sound in air, v_{air}, increases with increasing temperature:

$$v_{air} \propto \sqrt{T}.$$

Note also that: $v_{helium} \approx 3v_{air}$ since: \{M_{molar}(Helium) = 4 gms\} \ll \{M_{molar}(Air) = 28 gms\}.

Longitudinal speed of sound propagation (in bulk)

Longitudinal characteristic specific acoustic impedance for water:

$$v_{H_2O} = \frac{B_{H_2O}}{\rho_{H_2O}} \approx 1480 \text{ m/s} >> v_{air} \approx 330 \text{ m/s}$$

$$z_{||}^{H_2O} = \rho_{o}^{H_2O} v_{o}^{H_2O} = 1000 \text{ kg/m}^3 \cdot 1480 \text{ m/s} = 1.48 \times 10^6 \text{ Pa-s/m} = 1.48 \times 10^6 \Omega_{ac}$$

Compare: $z_{||}^{H_2O} = 1.5 \times 10^6 \Omega_{ac} \gg z_{||}^{air} = 415 \Omega_{ac}$.

Longitudinal speed of sound propagation (in bulk)

Longitudinal characteristic specific acoustic impedance for an elastic solid:

$$v_{Solid} = \sqrt{\frac{Y_{Solid}}{\rho_{Solid}}} \quad \text{where: } Y_{Solid} = \text{Young’s modulus (force/unit area, i.e. N/m}^2\text{) – i.e. Pascals!}$$

$$Y \equiv \frac{S}{\Delta L/L} (N/m^2) = \text{Ratio of compressive stress/compressive strain}$$

$$z_{||}^{solid} = \frac{\rho_{o}^{solid} v_{o}^{solid}}{\rho_{o}^{solid}}$$

Now, e.g. for steel: $Y_{steel} = 2 \times 10^{11} \text{ Pascals}$ and: $\rho_{steel} = 7.9 \text{ gm/cm}^3 = 7900 \text{ kg/m}^3$.

Thus: $v_{Steel} = \sqrt{\frac{Y_{Steel}}{\rho_{Steel}}} = \sqrt{\frac{2 \times 10^{11}}{7800}} \approx 5000 \text{ m/s}$

$$z_{||}^{Steel} = \rho_{o}^{Steel} v_{o}^{Steel} = 7900 \text{ kg/m}^3 \cdot 5000 \text{ m/s} = 3.95 \times 10^7 \text{ Pa-s/m} = 3.95 \times 10^7 \Omega_{ac}$$

Compare: $z_{||}^{Steel} = 4.0 \times 10^7 \Omega_{ac} \gg z_{||}^{H_2O} = 1.5 \times 10^6 \Omega_{ac} \gg z_{||}^{air} = 415 \Omega_{ac}$.
Longitudinal Speed of Sound Propagation in Various Bulk Media

<table>
<thead>
<tr>
<th>Gases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>v (m/s)</td>
</tr>
<tr>
<td>Hydrogen (0°C)</td>
<td>1286</td>
</tr>
<tr>
<td>Helium (0°C)</td>
<td>972</td>
</tr>
<tr>
<td>Air (20°C)</td>
<td>343</td>
</tr>
<tr>
<td>Air (0°C)</td>
<td>331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquids at 25°C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>v (m/s)</td>
</tr>
<tr>
<td>Glycerol</td>
<td>1904</td>
</tr>
<tr>
<td>Sea water</td>
<td>1533</td>
</tr>
<tr>
<td>Water</td>
<td>1493</td>
</tr>
<tr>
<td>Mercury</td>
<td>1450</td>
</tr>
<tr>
<td>Kerosene</td>
<td>1324</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>1143</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>926</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solids</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>v (m/s)</td>
</tr>
<tr>
<td>Diamond</td>
<td>12000</td>
</tr>
<tr>
<td>Pyrex glass</td>
<td>5640</td>
</tr>
<tr>
<td>Iron</td>
<td>5130</td>
</tr>
<tr>
<td>Aluminum</td>
<td>5100</td>
</tr>
<tr>
<td>Brass</td>
<td>4700</td>
</tr>
<tr>
<td>Copper</td>
<td>3560</td>
</tr>
<tr>
<td>Gold</td>
<td>3240</td>
</tr>
<tr>
<td>Lucite</td>
<td>2680</td>
</tr>
<tr>
<td>Lead</td>
<td>1322</td>
</tr>
<tr>
<td>Rubber</td>
<td>1600</td>
</tr>
</tbody>
</table>
Legal Disclaimer and Copyright Notice:

Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any consequential, incidental, and/or other damages resulting from the mis-use of information contained in this document. The author has made every effort possible to ensure that the information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and International Copyright Laws. No portion of this document may be reproduced in any manner for commercial use without prior written permission from the author of this document. The author grants permission for the use of information contained in this document for private, non-commercial purposes only.