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Lecture Notes III 
 

Waves & Wave Propagation 
 
Sound waves propagate in a physical medium: 
 

 * gas, liquid or solid (and/or a plasma – the 4th state of matter @ very high temperature!) 
 

 * mass density of the medium   (= mass per unit volume)  is important 
 

 * sound wave (“disturbance” = energy pulse)  propagates in the medium 
               with a characteristic speed of propagation v in that medium. 
 

 * propagation speed, v depends on density & elastic properties of the medium. 
 

Simple model of (one-dimensional) medium: 
 
                                  Atom              EM forces between atoms 
                (microscopic picture of 
                  macroscopic medium) 

 
Crystalline metal – sound waves propagating in a 3-D lattice of atoms: 
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Longitudinal Sound Waves Propagating in 1-Dimension: 
 

Displacement of atoms from equilibrium positions   i.e. compression/rarefaction is 
in/along/parallel to direction of propagation of soundwave 
 

Longitudinal sound waves – in gases, liquids and solids (i.e. bulk materials) 
 
Propagation of Longitudinal Waves in One Dimension as a Function of Time: 

Time 
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Tuning Fork Used to Generate 1-Dimensional Longitudinal Waves: 
 

Transverse Sound Waves Propagating in 1-Dimension: 
 

Displacement of atoms from equilibrium positions is perpendicular (i.e. transverse) to direction 
of propagation of wave. 
 

Waves in a solid – e.g. a vibrating string (1-D), or a vibrating rectangular, triangular or circular 
sheet/membrane (2-D), a vibrating hollow box, pyramid, cylinder or sphere (3-D)! 
 

 
Transverse  Sinusoidal Traveling Wave in 1-Dimension: 
 

 
 

Time 
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Propagation of Transverse Waves on a Stretched String as a Function of Time: 
 

 
 

 
 

Time 

Time 
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Propagation of Longitudinal Waves in an Air Column: 
 

 

                                           Compression                   Rarefaction 

 

  (displacement of air molecules       &          (over-pressure “pressure displacement” 
 from their equilibrium positions)                        from equilibrium pressure – 1 Atm.) 

n.b. Over-pressure and displacement of air molecules are 90 out of phase with each other! 
 

Time 
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A = displacement amplitude of wave = max displacement from equilibrium position (meters, m) 
 

f  = frequency of wave = number of complete cycles per second of wave  
      (cycles per second = cps = Hertz, or Hz). 
 

 = “lambda” = spatial wavelength of wave – distance to complete one oscillation cycle  
        (meters, m) 
 

 = “tau” = period of wave = time to complete one oscillation cycle = “temporal wavelength”  
       (seconds (secs, or s) ): 
                                
 
 
v = speed of propagation of wave (meters/second = m/s): 
 
 = “omega” = angular frequency (radians/second = rads/sec, or rads/s): 
 
 
 
k = spatial wave number   (inverse meters, i.e. 1/meters = 1/m): 
 
                    Hence, we also see that:  
      
     Sinusoidal longitudinal wave propagation {in the +ve z-direction} (relevant e.g. for sound 
propagation in air/water) is mathematically described by: 
           
       
 
where z = listener’s position, oZ = longitudinal displacement amplitude (i.e. along the direction 

of propagation) and Z(z,t) is the instantaneous longitudinal displacement (i.e. longitudinal 
deviation) from the wave’s equilibrium position at the point z at time t. 
 

     Note that the argument of the sine function  t kz  = constant. Thus, as time t increases, the 

position z must also increase – hence the name traveling wave. Hence, we also see that an argument 
of the sine function of the form  t kz   = constant mathematically represents a traveling 

longitudinal displacement plane wave propagating in the z direction:  ( , ) sinoZ z t Z t kz  . 

 

1 f   

v f   

2 ,    / 2f f      

2k    

 ( , ) sinoZ z t Z t kz   

2 2v f f k         

A 
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     The longitudinal speed of propagation v of transverse displacement traveling waves, where the 
displacement (from equilibrium position) is e.g. in the y-direction, perpendicular (i.e. transverse) 
to the direction of propagation, e.g. in the  z-direction is mathematically described by: 
 

 ( , ) sinoY z t Y t kz   for a transverse traveling plane wave propagating in the  z-direction. 
 

     For transverse waves propagating on a stretched string having tension, T (n.b. the SI / metric 
units of tension T  (= force) is Newtons, N = kg-m/s2), the string has mass M and length L ,  
the longitudinal speed of propagation of transverse traveling waves on a string is given by: 
 
                                 
            a                            L                              b 
  
  where:              = mass per unit length of string (SI units: kg/m) 
 
Example: Tension and Transverse {Standing} Waves on the High-E String of a Guitar: 
 
n.b. A standing wave = superposition of two traveling waves propagating in opposite directions! 
 

                        fHi-E = 332 Hz for open Hi-E string. 
 
The high-E string on a guitar has diameter, D = 0.009” (~230m)     m4.25"1000/1"001.0   
 
L   = string length = 63.5 cm = 0.635m (= 25.0” = scale length e.g. of a Fender electric guitar) 
 

   = density of string = 7.9 gms/cm3 = 7900 kg/m3 for steel. 
 

A = cross-sectional area of string = R2 = (D2/4) = 4.10410-3 cm2 = 4.10410-9 m2. 
 

V   = volume of string  22 2 3 6 32 4 0.026 0.026 10A L R L D L D L cm m   
           

 

Mass of string:     2 34 0.206 0.206 10M V A L D L gms kg    
        

 

A LM V

L L

  
  

 
L

3
40.206 10

3.242 10
0.635

kg
A kg m

m








      

 

Now fHi-E = 332 Hz, and Hi-E = 2L = 20.635 m = 1.27 m (see above pix, for fundamental) 
 
Thus, the longitudinal speed of transverse traveling waves on the Hi-E string of a guitar is: 
 

vHi-E = fHi-E *Hi-E = 332 Hz*1.27 m = 421.6 m/s 
 

v T   M L   

T T 

z 

y 
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Since /Tv  ,  the string tension T on the Hi-E string of the guitar is: 
 

T = v2 = (3.24210-4 kg/m)*(421.6 m/s)2 = 57.6 kg-m/s2 = 57.6 N  12.95 lbs of force.  
 

The typical string tension on a steel-stringed acoustic and/or electric guitar is T ~ 50 – 60 N. 
 

 For steel 6 (12)-string guitar, total string tension is ~ 300 – 360 (600 – 720) N !!! 
 
 
 
 

PROPAGATION OF SOUND WAVES IN 2 & 3 DIMENSIONS 
SOUNDWAVES EMANATING FROM A POINT SOURCE 

 

PROPAGATION OF SOUND WAVES IN A 3-D GAS (e.g. AIR) 
 

A sound wave freely propagating in a gas = longitudinal compression/rarefaction of the gas. 
 

Gives rise to a longitudinal displacement wave. If harmonic/sinusoidal in nature, far away from 
the sound source we have traveling plane waves, e.g. propagating in the + z-direction:  
 

       ( , ) cosz oz t t kz     = mean (or avg.) longitudinal (i.e. z-) displacement of air molecules 

 
and a corresponding over-pressure wave of the form: ( , ) ( , ) atmp z t P z t P  , where ( , )P z t  is the 

instantaneous absolute pressure, and Patm = atmospheric pressure = constant, typically ~ 14.7 psi 
 1.03105 Pascals (Pa) at NTP (i.e. sea level and temperature T = 20 oC). 
 

For a harmonic traveling plane wave, the instantaneous over-pressure is:   ( , ) sinop z t p t kz   
 

Sound waves can propagate through elastic, compressible media as longitudinal waves. 
 

 

1 N = 0.2248 
lbs of force, 

 1 lb of force = 
4.448 N 
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The over-pressure atmp P P P     required to compress a gas of initial volume V to V V  is: 
 

        
 
 

 
Change in the pressure                                     Fractional change in volume 
for a fractional change in volume 
   (adiabatic conditions) 
 

                                   (Adiabatic) bulk modulus, B  of fluid (here, a gas)  
 

B is the so-called adiabatic bulk modulus, B = 1/  where  = compressibility of the fluid (liquid 
or gas) – n.b. B has same SI units as pressure, p (from dimensional analysis of above formula)! 
 

     Thus, we see that the adiabatic bulk modulus B of a fluid (liquid or gas) is the (negative) of 
the change in the {over-pressure} divided by the fractional change in the volume of the fluid due 
to the change in the over-pressure: 
 

 
 
 
 
Now, for so-called adiabatic (i.e. slow) compression of a gas due to e.g. propagation of sound 
waves in the gas: 
 

   = “gamma”  CV/CP = Ratio of:  specific heat of gas @ constant volume 
             specific heat of gas @ constant pressure 
  

   = 5/3 for monatomic gases (e.g. helium, neon, argon & xenon) 
 

   = 7/5 for   diatomic   gases (e.g. oxygen & nitrogen molecules – O2 & N2) 
 
The Ideal Gas Law: 
 

 
    Absolute temperature (degrees Kelvin) 
 
Pressure  Volume  # Moles        R = universal gas constant = 8.3145 (Joules/mole/deg.K) 

      (N/m2)         (m3)      of gas             
 

e.g. Carbon atom has 12 atomic mass units (amu’s), and thus 1 mole (mol) of carbon      
       {having Avogadro’s number, NA = 6.022 x 1023 atoms/mole} weighs 12 grams. 
 

Now air @ NTP (a mixture of oxygen & nitrogen molecules, traces of argon, etc.) is NOT  
a perfect ideal gas – but is close to an ideal gas. 
 

For the so-called adiabatic condition:  PV =  constant = K,  thus:  P = KV 
 

 

atm

V
p P P P B

V

        
 

 

PV NRT  

      
P

B Pascals
V V
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Then for small pressure variations  atm atmp P P P P     :       P P V V     

However, from above: 
 

P
B

V V


 


.  Thus, we see that: atmB P P    for atm atmp P P P   . 

For 1-D traveling plane waves:    ,z z t
p P B V V B

z


      


. 

Thus, we see that there is a relation between overpressure  ,p z t and the local slope (i.e. the 

spatial gradient) of the longitudinal displacement  ,z t z  : 
 

If longitudinal displacement:   ( , ) cosz oz t t kz      then:    , ,zp z t B z t z     gives: 
 

           ,
, , , sin sinz

atm o o

z t
p z t p z t P P z t B Bk t kz p t kz

z


  


          


 

 

Hence, we see that the over-pressure  ,p z t  and the longitudinal displacement of air molecules 

from their equilibrium positions ( , )Z z t  are 90o out-of-phase with each other. 
 

The (mean, or avg.) longitudinal speed of air molecules ( , )zu z t is the time rate of change of the 

(mean, or avg.) longitudinal displacement of air molecules, i.e. the time derivative  ,z z t t  .  
 

Thus, for a harmonic/sinusoidal sound wave in air, the instantaneous particle velocity is:  
 

       , , sin sinz z o ou z t z t t t kz u t kz            
 

Thus, we also see that the longitudinal speed of air molecules  ,zu z t  and the overpressure 

 ,p z t  are in-phase with each other for sound waves propagating in “free” air: 
 

           0 0

,
, sin sin sin ,o z

z t Bk Bk
p z t p t kz B Bk kz t kz t u z t

z


    

 


          


 

 

     A medium has a so-called characteristic specific acoustic impedance  az r


 associated with 

it at the listener point r


 – which physically is a measure of how easy (or difficult) it is for 
(acoustic) energy to flow from one point to another in the medium. For longitudinal traveling 
acoustic plane waves propagating freely in a gas, the characteristic longitudinal specific 
acoustic impedance  az r   is defined as (using v k f   , and 2B v  {see below…}):  
 

     a zz r p r u r Bk B v v       
  (SI units of  az r


: Pa-s/m = acoustic Ohms). 

 

The characteristic longitudinal specific acoustic impedance for air is:  
 

 , 31.204 345 415 - 415 415 air air air
a o o acz r v kg m m s Pa s m Rayls         @ NTP. 

 

aka Rayls, in 
honor of Lord 
Rayleigh (John 
William Strutt) 
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Because  , air air air
az r v 

, since both the mass density of air air and the longitudinal speed of 

propagation airv  have a slight temperature (and pressure-) dependences (as well as slight 

humidity dependences),  , air
az r 

 also has a slight temperature (and pressure-) dependence (as 

well as a slight humidity dependence) – see below…. 
 

     The wave equation for describing propagation of longitudinal sound waves in a gas relates the 
speed of longitudinal sound propagation in the gas v (m/s) to the adiabatic bulk modulus of the 
gas B (in N/m2 = Pascals) and the gas density,   = M/V  (in kg/m3) by the following formula: 
 

       
 
 

From dimensional analysis: 
 

 SI units:   
 2 22 2

3 3 2

- /kg m s mN m m
B

kg m kg m s
           note: 21 1 - /N kg m s  

 

 Thus:           2 2v B m s m s   =  meters/second = dimensions of speed 
 

Now, since B P  then: v B P     
 

The gas density molar mole molarn PM

V V RT
  
   {for an ideal gas, and using the ideal gas law} 

where Mmolar = molar mass ( )kg mol , and nmole = # of moles of gas. 
                                                  

Then for an ideal gas:   molarv B P RT        
 

Hence, e.g. the speed of sound in air has a temperature-dependence!  
Normalizing to the so-called standard temperature (300K) and pressure (1 atm): 
 

o o o o330 ( ) 273 273 330 0.6 ( )airv T C T C        (m/s) 
 

The latter relation was obtained using the Taylor-series expansion for                           for  << 1 
and keeping only the first non-trivial term in the Taylor-series expansion, which is linear in  
 = T(oC)/273oK << 1. 
 

vair  330 m/s @ T =   0 oC  (@ p = 1 atm (i.e. at sea level)) 
 

vair  340 m/s @ T = 20 oC  (@ p = 1 atm (i.e. at sea level)) 
 

 
 
 
 
 

1
21 1  

v B   
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Thus, we see that that speed of sound in air, vair increases with increasing temperature: 
 
        
             340    vair is proportional to/grows with T. 
 
    

 
             330 
           

                   0oC                     20oC          T 
 

Note also that:  vhelium ~ 3vair  since: {Mmolar(Helium) = 4 gms} << {Mmolar(Air) = 28 gms}. 
                     {monatomic}      {diatomic} 
 

Longitudinal speed of sound propagation (in bulk) 
and 

Longitudinal characteristic specific acoustic impedance for water: 
 

 
OH

OH
OH

B
v

2

2

2 
1480 m/s >> vair  330 m/s 

 

2 2 2 3 6 61000 1480 1.48 10  - 1.48 10  H O H O H O
o o acz v kg m m s Pa s m         

 

Compare:   2 61.5 10  415 H O air
ac acz z       

 
Longitudinal speed of sound propagation (in bulk) 

and 
Longitudinal characteristic specific acoustic impedance for an elastic solid: 

 

Solid

Solid
Solid

Y
v


  where:  YSolid = Young’s modulus (force/unit area, i.e. N/m2) – i.e. Pascals!)                         

 

       2S
Y N m

L L



 = Ratio of compressive stress/compressive strain 

 

 solid solid solid
o oz v  

 
Now, e.g. for steel:  Ysteel = 21011 Pascals  and: steel = 7.9 gm/cm3 = 7900 kg/m3. 
 

Thus:   
112 10

5000
7800

Steel
Steel

Steel

Y
v m s




    

 
3 7 77900 5000 3.95 10  - 3.95 10  Steel Steel Steel

o o acz v kg m m s Pa s m         
 

Compare:   27 64.0 10  1.5 10  415 H OSteel air
ac ac acz z z            

 

( )airv m s
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Longitudinal Speed of Sound Propagation in Various Bulk Media 
 

 

 
 
 

Gases 

Material v (m/s) 

Hydrogen (0°C) 1286 

Helium (0°C) 972 

Air (20°C) 343 

Air (0°C) 331 

Liquids at 25°C 

Material v (m/s) 

Glycerol  1904 

Sea water  1533 

Water  1493 

Mercury  1450 

Kerosene  1324 

Methyl alcohol  1143 

Carbon tetrachloride 926 

Solids 

Material v (m/s) 

Diamond  12000 

Pyrex glass  5640 

Iron  5130 

Aluminum  5100 

Brass  4700 

Copper  3560 

Gold  3240 

Lucite  2680 

Lead  1322 

Rubber  1600 
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