UIUC Physics 406 Acoustical Physics of Music

Complex Vibrations & Resonance

Simple vibrating systems have only one frequency (the fundamental).
Few such systems exist in real life (n.b. they are also musically less interesting/boring..).

Real vibrating systems are “complex” — rich structure of harmonics/overtones.
Overtone structure may also change/shift with time — not constant — more interesting!

Vibrating Strings - Standing Waves:

Consider a stretched string of length L, vibrating from fixed (i.e. rigid) end supports:
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fixed endpoints (rigid)

Plucking the string at position x launches two counter-propagating traveling waves:
* One traveling wave moves to the right, the other traveling wave moves to the left.

* When the traveling wave(s) hit the rigid/fixed ends at x = 0 and x = L, they are reflected,;
A polarity flip (= phase change of 180") also occurs there.

Compare this situation to that for two counter-propagating traveling waves reflected from free
ends - no polarity change (i.e. no phase shift) occurs!

The superposition {i.e. the linear addition yiot(X,t) = y1(x,t) + y2(x,t)} of two counter-
propagating traveling waves (one right-moving, yi(x,t) and one left-moving, y2(x,t))
creates a standing wave on the string!
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Complex Vibrations and Resonance 57
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Fic. 1. Production of a standing wave on a string by two identical waves
traveling in opposite directions. Diagrams (a), (b). (¢), (d), and (e) are
the configurations at intervals of one-eighth cycle.
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Fic. 2. Standing wave on a long string.
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Fic. 3. First four vibration modes of a string [astened at both ends

Longitudinal wave speed, v

~N :i,

(foest \'\av-wws\ﬁ‘-)
i= L )
\’\cw-w\mm (&
(15 overdtore )

nd

v=fredy = fih = fadg =... f), n=integer=1,23,4, ...

fn:nfl )\n :)\n :Al/n

\/? T = string tension (Newtons)
V= |—

4 = mass per unit length of string = M/L (kg/m)
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Standing Waves

Created when harmonic traveling wave reflects e.g. from a fixed (i.e. rigid, immovable) end:
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e Resultant wave (in the x < L region) is of the general form:

y(xt)=f(x—vt)— f (—x—vt) where: f(x—vt)=Asin

27?[5—1]
AT

Analytic form for two counter-propagating traveling waves:

X t X ¢ n.b. the —sign for the left-moving reflected wave is
. . . due to the polarity flip (i.e. phase change of 180° upon
y (X, t) = Asin| 2w [X - _] — Asin| 2w [_X - _] — reflection) of the incident right-moving wave from the
T T fixed/immovable endpoint.
. x t . x ot - - .
= Asin |27 ot Asin|2m e n.b. |sin(-u)=-sinu| i.e. odd fcn of u.
T T

Now use the trigonometric identity: sin (Ai B) =sin AcosB +sin Bcos A

y(xt)= Asin[ﬂJcos[@]— Acos| ¥ s 2t
A T A T

—i—Asin[m]cos[@ + Acos 2mX ]

A T A T

2mt for standing wave

. 27X
Thus: y(x,t)=2Asin|——|cos
yixt) [A] [r

= two counter-propagating traveling waves.

e Note: The analytic form describing the transverse displacement y(x,t) associated with a
standing wave is the product of two harmonic functions: fcn(space) x fcn(time).
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Nodes of transverse displacement occur at x-values along the string where sin (27rx/)\) =0
= x-positions along the string where the transverse displacement is minimum: y(x,t) =0

sin(27rx/)\):0 when: (27TX/)\)207T,17T,27T,37T....: nm, n=0,123....

Thus, we see that nodes occur at: X = )\:%)\,l)\,gA,ﬁ)\.... n=0,123....

n
2

P

ANT) NODE S

AN D NS S5 A SRR ERRANS

Anti-Nodes of transverse displacement occur at x-values along the string where sin (27x/\) =1
= x-positions along the string where transverse displacement is maximum: y(x,t) = A

sin (2mx/\) =1 when (2rx/)) =12 32 Sl....:m%, m=135,...

Thus, we see that anti-nodes occur at: x:%)\:%A,%)\,%)\.... m=13,5,...
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STANDING WAVES

= Resonance Phenomenon

Input energy to create a “stable” configuration:

e.g. A person swinging on a swing:

e.g. A traveling wave on a string:
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Traveling wave “gets in phase” after it travels a distance 2L in time 7= 2L/v
.. "PUSH" with frequency f =1/7 =v/2L excites the fundamental!
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Resonant Frequencies for Standing Waves on a String of Length, L: f, =v/\,
Transverse displacement nodes sin (27rx/)\) =0 atx =0and x = L (endpoints of string).

Standing wave patterns — “normal modes”
[« L >|
Ist harm. | L = A%L A= % L| f1= ,lgl’u =21
2nd harm. | L = 2.’2\2 Ag = ﬁ L| fo = 22"]}- =2 fy
S = TS 2 R i
. “<__>"\/_1 /\ 3rd harm. | L = 353 Az = % L | f3= %‘ﬁ =3 fi
WM%WWW uth harm. | L = B—%’-L Mg = f) L fi = 7'2/1 =n fi
Note: 1% harmonic (n = 1) also known as the Fundamental
2" harmonic (n = 2) also known as the 1%t Overtone
3 harmonic (n = 3) also known as the 2" Overtone
etc.
v
fo=n—=nf;, f=—
n L 1 1 oL
2L X
hy=—=2;
n
Fioune 2.6. Time analysis of the motion of & string plucked al its midpoint
through one liall cycle. Motion ean be Lhought of as due Lo Lwo pulses Liaveling

in npposite direclions
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Ficune 2.7. Spectrum of a string plucked one-Gfth of the distance ftom one end

Envelope of
Relative / H Qf
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Figune 2.5. Frequency analysis of a string plucked at its center. Odd-numbered
modes ol vibration add up in appropriate amplitude and phase Lo give Lhe shape

of the siring.

Please see/hear/touch UIUC Physics 406POM Guitar.exe demo — shows/demos the Fourier
harmonic amplitudes associated with a guitar string plucked at arbitrary point along its length....
Reconstructs the geometrical shape of the plucked string (@ t = 0) from Fourier components...
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PICKING/PLUCKING A GUITAR STRING
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Ystring (:X) = YR (VE—X) + y_ (vt + x) ="standing" wave
right-moving left-moving
traveling traveling
wave wave
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Vibrating Air Columns

(Longitudinal) Standing Waves in a Pipe:

= superposition of two counter-propagating traveling waves (one right moving, one left moving)

Rarefaction and compression of air molecules = displacement of air molecules from their
equilibrium positions

See UIUC Physics 406 animation of longitudinal displacement of air molecules in a pipe...
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Frc. 5. Longiludinal standing wave in an air column. (a) At an instant of
maximum displacement of the air molecules. (b) One-half cycle later.

DISPLACEMENT PRESSURE

i itudin: anding wave,
Fic. 6. Graphic representation of a longitudinal standing wa

Three basic kinds of “organ pipes’:

a.) Both ends closed (analogous to “fixed” ends on a vibrating string)
b.) Both ends open (analogous to “free” ends on a vibrating string)
c.) One end open, one end closed (analogous to one end fixed, one end free on string)

= Boundary Conditions on mathematical allowed solutions to the wave equation that
describes the longitudinal waves propagating in an organ pipe
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a.) Both Ends Closed:

v=f A\,
Vv

fo=nfj=n—
n 1 oL
NS

n n
n=12234...

o N :

fi = e (8)

{a)

(b) f2= 2f|

(c) f3= 3f)

Fic, 7. First three vibration modes of an air column closed at both ends.
Solid Tines give displacement amplitudes: dashed lines, pressure amplitudes.

Closed Ends: = Pressure anti-nodes and displacement nodes at x =0 and x = L.
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b.) Both Ends Open:

v=f\
v
f,=nfi =n—
n 1 oL
A o2t
n n
n=123,4...

Open Ends: = Pressure nodes and displacement anti-nodes at x =0 and x = L.

Fic. 8. First three vibration modes of an air column open at both ends.
Solid lines give displacement amplitudes; dashed lines, pressure amplitudes.
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c.) One End Open, One End Closed:

V= f\n
v
fo=mff=m—
m= gL
N 4L

)\ = —= —
" m m
m=1357...

n.b. Only odd-m integers allowed!

Closed End: = Displacement node & pressure anti-node at x = 0.
Open_End: = Displacement anti-node & pressure node at x = L.

)\r'
2L
=28
f|'4L
A
a3
f'=3f,
XN_L
45
f“:5f|

Fic. 9. First three vibration modes of an air column closed at one end and
open at the other. Solid lines give displacement amplitudes; dashed lines,

pressure amplitudes.
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Normal Modes & Standing Waves

1.) Standing Sound Waves in an Organ Pipe:

(a) Standing displacement wave:

y= Asin[z)\ ]co [27 ] (Standing Wave)

T

e Displacement node at x =0

| < | —> |

(b) Standing pressure wave:

6‘y
8x

AP =—

=—-BA gsm 27X/ ) Cos 2t 27TBAcos 2mX cos 2mt
sinem o) 55 oo ol

T A T

e Explains why displacement nodes are pressure anti-nodes!

(c) Pressure node (p = Pambient) Just beyond openend x = L + § <= not precisely at x = L!
e so-called “end correction” § ~ 0.6D , where D = diameter of pipe.
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2.) Standing Sound Waves in Closed-Open Organ Pipes:

Closed End: = Displacement node & pressure anti-node at x = 0.

Open End: = Displacement anti-node & pressure node at x = L.

>|

n!

where: n’=2n-1,

n=123,...s0n =135,...

e First harmonic also known as the fundamental.

e Second harmonic also known as the first overtone, etc.

e Replace L by L + ¢ for “exact” answer
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3.) Standing Waves in Open-Open (and Closed-Closed) Organ Pipes:

UIUC Physics 406 Acoustical Physics of Music

Open Ends: = Pressure nodes and displacement anti-nodes at x =0 and x = L.
Closed Ends: = Pressure anti-nodes and displacement nodes at x =0 and x = L.

Y1
Ist harm.| L %/\1 A %L iy == -12—% =1 f1
) s r 7 .
2nd harm.| L %/\2 A9 %L fo = i_JL =2 f1
Srd harm| L=8X3 | A3 =2L | f3 =37 =3 f
nth harm.| L %/\1;. iz, = %L iy =2 %—E = fi
(n.b. open-open
standing wave
modes drawn)
v v
fnz)\—znfl; flzz; n=123,...

n

Replace L by L + 2 & for “exact” answer.

First harmonic also known as the fundamental

Note: Since Vpglium > Vair, f (helium)> f; (air)
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Conical-Shaped Air Columns

Some wind instruments - e.g. whistles, recorders, flutes, oboe, bagpipes (chanter) have
conical-shaped air columns: ~ more complicated organ pipes — one end open; one end closed...

= L >| L e —
(a) (d)

A B A B

_

U

A B A B

e

Fie. 10. (a), (b), (¢) Geing from an open tube to a cone. (d), (e), (f)
Going [rom a closed tube to the same cone.

v=f\,
fI"I = nfl
o2t
n n
n=123..

A complete cone has the same mode vibration frequencies as that for an open-open tube of
the same length — the tip of the cone reflects like the open end of a tube!!

(a)

(b) fe 21,

Fie. 11. First three vibration modes of a complete cone,
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(a)

(b)

HOLE

Fic. 12. Distorted air columns.

The Tuning Fork: Vibrations of a metal bar clamped @ one end (math not simple..):

fz = 627 f|

(c) E =N
== f5=17.55 f
- \\\\b 0

Fre. 13. First three transverse vibration modes of a metal bar clamped at
one end.

s
. -
—d

o ]

e |

(d)

(a) (b} (c)

Frc. 14. Vibrations of a tuning fork. (a) Normal vibration. (b) Clang tone.
(e) Another mode of yibration. (d) End view of this mode.
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Legal Disclaimer and Copyright Notice:

Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any
consequential, incidental, and/or other damages resulting from the mis-use of information
contained in this document. The author has made every effort possible to ensure that the
information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and
International Copyright Laws. No portion of this document may be reproduced in any manner for
commercial use without prior written permission from the author of this document. The author
grants permission for the use of information contained in this document for private, non-

commercial purposes only.
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