UIUC Physics 406 Acoustical Physics of Music

Tone Quality — Timbre
A pure tone (aka simple tone) consists of a single frequency, e.g. f = 100 Hz.

Pure tones are rare in nature — natural sounds are often complex tones, consisting
of/having more than one frequency — often many!

A complex tone = a superposition (aka linear combination) of several/many
frequencies, each with its own amplitude and phase.

Musical instruments with a steady tone (i.e. a tone that doesn’t change with time)
create a periodic complex acoustical waveform (periodic means that it repeats
every so often in time, e.g. with repeat period, 7):

A(t) A A(t)) = A(tz+t7) = A(t)
v v
0 — r=t—t; — ™
5] t

Fourier analysis (aka harmonic) analysis — mathematically can represent any
periodic waveform by an infinite, linear superposition of sine & cosine waves —
integer harmonics of fundamental/lowest frequency:

Aot () =2 + > ap cos (Nuwit) + > by Sin (Nuwt)

wy =2rfy| f1 = fundamental frequency, repeat period 7= 1/f;

Please see UIUC Physics 406 Lecture Notes — Fourier Analysis I, 11, 111 & IV for
more details... http://courses.physics.illinois.edu/phys406/406pom lectures.html

A complex tone - e.g. plucking a single string on a guitar - is perceived as a
single note, but consists of the fundamental frequency f;, plus integer harmonics

of the fundamental frequency: f, =21, f;=3f;, f, =41, fy =5f, etc.
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Harmonics of the fundamental also known as partials

The fundamental = 1% harmonic/partial
The 2" harmonic/partial has f, =2f; (aka 1% overtone)

The 39 harmonic/partial has f; =3f; (aka 2" overtone) .... etc.

A vibrating string (guitar/violin/piano) contains many harmonics = complex tone.

The detailed shape of a plucked string on a guitar (or violin) uniquely determines
its harmonic content! Please see/hear/touch Physics 406POM Guitar.exe demo!

“mellow” — less high harmonics “bright” — more high harmonics
< pluck near < pluck near
\niddle of the end of
; jstring the string
x=0 x=L/2 x=L x=0 x=L

The geometrical shape of the string at the instant (t = 0) that the string is
plucked defines the amplitudes (& phases) of the harmonics associated with

standing wave on the string: ™\

0 \}
Transverse Displacement of String: [y (x.t)= 3 ¢ sin(nkyx)cos(nwit + )
n=1

where: k1:27'('/)\1 and: W1:27Tf1 with: szlﬂ,lza)l/kl

T = string tension

T] M ke :
N =2L v=Nf = |— =—/|" M =mass of strin
1 q T1 \/;(/ H= g
kp = nkq :i—” v=\,f, =wpy kg L = length of string
n
Ay =N/n and: f, =nf; where: n=1234,..

Hierarchy of tones/harmonics = harmonic series;
e.g. y(xt)= % by sin (nkyx) cos (newyt)
n=1
= superposition of waves of frequencies f, = nf; on a vibrating string

Note that f, =2f;, means that f, is one octave higher than f;.

Ratio f,/f; =2:1 The musical interval between harmonics 1 and 2 is an octave.
Ratio f3/f, =3:2 The musical interval between harmonics 2 and 3 is a fifth, etc.
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Tone Structure:

We can build up/construct a complex waveform by linear superposition/linear
combination of the harmonics:

Aot (t) =2 + % ap cos (Nuwit) + % by Sin (Nuxt)
n=1 n=1

= 8, +(ay CoSwyt + ap COS 2wyt 4 ag cos 3wyt + a4 COS 4wt + ...
+(b_|_ Sinwlt +b2 sin 2w1t+b3 Sin3w1t +b4 sin 4w1t +)

= See/try out the UIUC P406’s Fourisim.exe and/or Guitar.exe computer demo
programs to learn/see/hear more about complex waveforms...

Harmonic Synthesis: Adding harmonics together to produce a complex waveform.

= Please see & hear the Hammond Organ harmonic synthesis demo... <

Harmonic Analysis: Decomposing a complex waveform into constituent harmonics.

Any complex periodic waveform can be analyzed into its constituent harmonics
I.e. harmonic amplitudes and phases (e.g. relative to the fundamental).

Pure sine {bnsin(nant)} and cosine {ancos(nazt)} waves have a 90° phase relation
with respect to each other, e.g. at a given time, t:

sine
+90°
A
¢/ -~~~ A = part cosine, part sine
: ¥
brsin¢rait)] -~ i = 37°
+180° & > » 0° = +360° cosine
-180°™.___.--7" | ancosthant)
A.(t) =a, cos(najt)+b, sin(nat)
—90° '+270°

From the above phasor diagram, note that we can equivalently rewrite A (t) as:
A, (t) =a, cos(nejt)+b, sin(nat) = A, cos(nat—g,)
From trigonometry, we see that: a, = A cosgp, and b = A sing_, and since:

-3-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2002 - 2017. All rights reserved.



UIUC Physics 406 Acoustical Physics of Music
cos(A—B)=cos Acos B+sin Asin B, hence we see that:

A, (t) = A, cos g, cos(nejt)+ A, sing, sin(nat) = A cos(nat—g, )

We also see that: A =/A?cos® g, + AZsin? g, = faZ +b? and that: ¢, =tan*(b,/a, ).

Hence, we can equivalently write the Fourier series expression:

Aot (t)=ag + % ap, oS (Nuwit) + % by Sin (Nuwxt)
n=1 n=1

as.

Aot (1) = ag + §1An cos(nwyt +¢p )
n=

with: A, =./aZ+b; and: ¢, =tan™(b,/a,).

Fourier analysis applies to any/all kinds of complex periodic waveforms —
electrical signals, optical waveforms, etc. - any periodic waveform (temporal,
spatial, etc.). Please see/read Physics 406 Series of Lecture Notes on Fourier
Analysis I-1V for much more details/info...
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Basic Musical Waveforms

1. Sine/Cosine Wave: Mellow Sounding — No High Harmonics

Sifj= AFCosiwt) vs. Wt {Ai=10) Harmmonie Content of a Bipolar Sine Wave
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2. Triangle Wave: A Bit Brighter Sounding — Has Harmonics!

Harmonic Content of a Bipolar Triangle Wave

Feamrier Congtruction of a Triange Wave
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3. Sawtooth Wave: Even Brighter Sounding — Even More Harmonics

Harrsanie Content of 3 Sawto oth Wave
Fourier Construction of & Sewtocth Wave
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4. Square Wave: Brightest Sounding — Has the Most Harmonics

Harmenle Contert of a Bipalar Square Wave
Fatier Conabrustion of & Souars Wave {50% Duty Cycle)
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Effect of {Relative} Phase on Tone Quality:

Human ears are sensitive to phase information in the ~100 < f <1500 Hz range.

In a complex tone, there also exists subtle sound change(s) associated with the
phase of higher harmonics relative to the fundamental. Due in part to non-linear
response(s) in the ear (& auditory processing in brain) - i.e. the non-linear response
associated with the firing of auditory nerves/firing of hair cells due to vibrations on
the basilar membrane in the cochlea, from overall sound wave incident on one’s
ears. This is especially true for loud sounds!!! Non-linear auditory response(s)
also become increasingly important with increasing sound pressure levels.

Please see/read Physics 406 Lecture Notes on “Theory of Distortion (I & 11)” for
details on how a non-linear system responds to pure and complex periodic signals.

Harmonic Spectrum:

Please see above figure(s) for harmonic content associated with:
a.) a pure sine wave
b.) a symmetrical triangle wave
c.) a sawtooth (= asymmetrical triangle) wave
d.) a bipolar square wave

Musical instruments have transient response(s) — i.e. the harmonic content of the
sounds produced by musical instruments changes/evolves in time.

How harmonics evolve in time is important.

How the harmonics build up to their steady-state values is important for overall
tone quality, e.g. at the beginning of each note.

How the harmonics decay at the end of each note is also important - very often the
higher harmonics decay more rapidly than lower-frequency harmonics, due to
frequency-dependent dissipative processes.

Formants:

Nearly all musical instruments have frequency regions that emphasize certain
notes moreso than others — these are known in musical parlance as formants — i.e.
resonances — due to constructive interference of sound waves in those frequency
regions. If resonances (constructive interference) exists within a given musical
instrument for certain frequency range(s), there will also exist anti-resonances
(destructive interference) for certain other frequency ranges, e.g. in between
successive formants.
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The physical consequence of such facts is that the sound level output from many
musical instruments is not constant (i.e. flat) with frequency. See following plot of
harmonic amplitude(s) vs. frequency for a hypothetical musical instrument:

Formants/Resonances (& Anti-Resonances):
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Fic. 8. Example of hypothetical tone produced by an instrument having
formant in the region 800-1000 hertz. (a) Fundamental of 100 hertz. (b
Fundamental of 200 hertz.
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FIGURE 9.20. Mechanical Fequency response and sound spectrum L m in front
of a Martin D-28 folk guitar driven by a sinuscidal force of 0.15 N applied to the
treble side of the bridge. Solid curve, sound spectrum; dashed curves, acceleration
level at the driving point.
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The Uniqueness of the Human Voice:

The human voice - larnyx (voice box) + hyoid bone (& attendant musculature)
+ lungs/throat/mouth/nasal cavities enable a rich pallet of sounds to be produced!
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Time-Domain Waveforms Associated with Speaking Letters of the Alphabet:

The Waveform
Alphabet
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The Uniqueness of the Human Voice:

The harmonic content associated with musical notes sung by three women
UIUC undergraduates were analyzed using the Matlab-based wav_analysis
program {Please see Abby Ekstrand’s Physics 193POM Final Report, Spring
Semester, 2007: http://courses.physics.illinois.edu/phys193/193_student_projects_spring07.html}

e.g. for the note D4 (fos = 293.7 Hz):

Amplitude? vs. Frequency:

Abby Molly Cheryl

= et et o e S T

Note the differences in formant/resonance regions in the above frequency spectra!

2-D Harmonic Amplitude/Phase Diagrams — the time-averaged SPL (dB) for each
harmonic is represented by the length of each arrow & the time-averaged relative
phase of each harmonic is represented by the angle of each arrow, relative to the
horizontal axis, for each of the higher harmonics relative to the fundamental. The
fundamental is always the blue arrow on the horizontal axis oriented @ 0 degrees.
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Harmonic Content of VVowels — John Nichols (P406 Spring, 2010):
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Harmonic Content of VVowels — Cont. — John Nichols (P406 Spring, 2010):
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Harmonic Content of a Martin D16 Acoustic Guitar — Low-E String (82 Hz):

Chok on saart and end poind for each harmonic

Amphtude”

Frogquency (He)
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Sound Spectrum of a Tawa-Tawa Gong (as a function of time):
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Floure 2011, Sound spectrum of a tawa tawa gong. The initial sound (t =0)
comes mainly from two prominent axisymmetric modes, but after 0.3 s many
mades of vibration have been excited, which decay at varying rates. Seme of the
modes are jdentified at the peaks (Rossing and Shepherd, 1982)

Sound Spectrum of a Large Gamelan Gong:
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FiGure 20.12. Sound spectrum of a large gamelan gong. The principal modes of
vibration have [requencies of 67 Hz and 135 Hz, and their corresponding partials
are about an octave apart (Rossing and Shepherd, 1982)
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The Build-Up and Decay of Harmonics from a Tam-Tam Gong:

.Aail"l“."”m"I“'"II"I|lllmlllllnxﬁlﬁ% 162 Hz

LT
i 850 TA m_,—]- AM

...—--‘!H!!ﬂi;l 1000 ( COO"‘CZQ

._—q...."’l,l 2000

Ll TR T TS 000

—— S — — — e et [0))4)

D i e ] TSN R(X)

€ 04s

FIGURE 20.8. Buildup and decay of vibrations in different frequency bands
during the first 0.1 s (Rossing and Fletchér, 1082),

Harmonic Spectrum vs. Time of a Tibetan Bowl:

Tibetan Bowl Power Spectrum
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The bassoon has a pronounced formant/resonance in the f ~ 440 — 500 Hz region

and a weaker one at f ~ 1220 — 1280 Hz. See table below for some brass and
woodwind instruments:

TasLE |

Formant frequencies in hertz for woodwind and brass instruments

INSTRUMENT FORMANT I FORMANT 11
Flute 800

Oboe 1400 3000
English Hom 930 2300
Clarinet 1500-1700 3700-4300
Bassoon 440-500 1220-1280
Trumpet 1200-1400 2500
Trombone 600-800

Tuba 200400

French Horn 400-500

Sound Effects: (Create enhanced/richer musical structure to sound(s) from
musical instruments)

Vibrato Effect — periodic, slow rhythmical variation/fluctuation of
frequency of complex tone.
— frequency modulation

Tremelo Effect — periodic, slow rhythmical variation/fluctuation of
amplitude of complex tone.
— amplitude modulation

Chorus Effect — Two or more instruments (of same type) simultaneously
playing the same music.
— not at exactly same frequency
— not perfectly in phase — slight vibrato with respect to each
other — beat against each other in musically pleasing way.

Non-Periodic Sounds — e.g. sound pulses A(t)

t

Some sounds produced by certain musical instruments (e.g. percussion
instruments) are not periodic. Non-periodic sounds - sound pulses - can be fully
described mathematically as a superposition (linear combination) of a continuum
(or spectrum) of frequencies, with certain amplitudes.
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Example: A noise “spike” (of infinitely short duration) consists of a linear
combination of ALL frequencies — with equal amplitudes!!

A noise spike in time has a flat frequency spectrum!

A

ATO'[ (t) = dn

Human Perception of Tone Quality - “Subjective Tones”

The human ear/brain are systems with non-linear responses. For example, when
two loud pure tones (frequency f; & f,) are simultaneously sounded together, a

third difference tone |f, — fy|can be heard!! (Actually two additional tones
(fy & f,) and |f, — fy| can be heard). This can only happen if there exist non-linear
response(s) in the human ear/brain!

Example: If one sounds two loud pure-tone notes together, one sound with
frequency f; =300 Hz, the other with frequency f, =400 Hz the human ear also

hears (f; & f,) and | f, — f;| sum and difference tones:

Summation tone: f; + f, =300 Hz +400 Hz = 700 Hz«—  n.b. harder to hear
Difference tone: |f;— f,|=|f, — f;|=[300—400| =100 Hz

These sum and difference frequencies arise solely due to non-linear response(s)
of the human ear/brain. Linear sum and difference frequencies (f; & f;) and | f, — fi|

arise primarily from quadratic non-linear response terms. Cubic, quartic, quintic,
etc. (non-linear response) terms give high order frequency effects! e.g.

2f,— f5,3f—2f,,2f; + f5,... }. When many frequencies/harmonics are present, the
non-linear response of the human ear/brain produces inter-modulation distortion
(many such sum and difference frequencies) — giving rise to perception of a
complicated set of combination tones. Please see/read UIUC Physics 406 Lecture
Notes on Theory of Distortion | & 11 for more details...
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Related Phenomenon:

The perceived harmonic content of a complex tone changes with loudness level!!
e.g. triangle and square waves sound brighter at 100 dB than e.g. @ 60 dB

This is simply due to fact that the human ear has an ~ logarithmic response to
sound intensity, which indeed is a non-linear response to sound intensity.

Loudness, L =10logyq(1/15)

Compare the ratio of loudnesses e.g. for the 3 <> 1%t harmonics of a square wave
@ 100 dB to that for 3" <> 1 harmonic loudness ratio for a square wave @ 60 dB:

il
il

Loud complex sounds are thus perceived to be brighter-sounding than the same

complex sounds at reduced loudness! See UIUC Physics 406 Lecture Notes on
Fourier Analysis for more details...

square wave @ 100dB = 90.5% <—

Not the same fractional amount!!!

squarewave @ 60dB = 84.1% <
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Legal Disclaimer and Copyright Notice:

Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any
consequential, incidental, and/or other damages resulting from the mis-use of information
contained in this document. The author has made every effort possible to ensure that the
information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and
International Copyright Laws. No portion of this document may be reproduced in any manner for
commercial use without prior written permission from the author of this document. The author
grants permission for the use of information contained in this document for private, non-

commercial purposes only.
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