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Pitch vs. Frequency: 
 

Pitch = human ear’s perception of frequency of a sound vibration 
 

Low  pitch  low  frequency of vibration/oscillation 
High pitch  high frequency of vibration/oscillation 

 

Q: Is the relation between {perceived} pitch vs. frequency linear?  
    e.g. a straight line y = mx + b relation?  A: No… See figure below: 
 

Define frequency “units” associated with subjective pitch = mels   analogous to Hz. 
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The Audible Frequency Range of Human Hearing (when young): 
 

                    ( )20 20        3 orders of magnitudeHz f KHz< <   
 

     As we grow older, the ange of frequencies that we can hear decreases  
    (both high and low frequencies – mostly on the high frequency end…) 
 

     Frequency ranges of musical instruments typically ~ 100  to ~  few Hz KHz  
e.g. guitar      Low E =     82 Hz 

                                High E =   330 Hz 
 

 Piano highest note is ~ 4200 Hz 
        Very little above ~ 10 KHz      (squeals & scrapes) 
 

     The human ear needs to be able to perceive a sound for minimum length of time 
t .  In order to determine a pitch – i.e. pure/single-frequency tone – the minimum 

duration time t  of the pure tone depends on its frequency: 
 

  
( ) ( )
( ) ( )

min

min

For ~   100  ~ 10 :  ~ 40      ~   4 cycles

For ~ 1000     1 :  ~ 13     ~ 13 cycles
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t
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     The minimum duration time t  for human perception of a pitch is certainly in 
part due our ear & brain processing, but for low frequencies especially, minimum 
time duration is also due to the uncertainty principle 1f t   , which tells us that a 
pure tone/single-frequency sine wave signal of finite duration t  in fact has a 
finite frequency spread f ! Only as the time duration t   does 0.f   
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     This can be seen by taking the Fourier transform of a finite-length {time 
duration ot } pure-tone/single frequency { of f } time domain sinusoidal signal 

  o osinp t p t  to the frequency domain  p f : 
 

     If   o o o osin sin 2p t p t p f t    for 1
o2t t  ,  and:   0p t   for 1

o2t t   , and 

defining the {rectangular} window function    w 1  0t    for 1
o2t t    1

o2t t  , 

respectively, then: 
 

        
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Using the trigonometric identity    1
2sin sin cos cosA B A B A B      : 
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

 

The sinc function   sin
sinc

x
x

x
  {n.b.  sinc 0 1 }, hence we can write  p f  as:  

      1 1 1
o o o o o o2 2 2sinc sincp f p t t t                 

The power spectral density functions     2

ppS f p f  (a frequency domain 

quantity) for infinite length and finite length sine-wave signals are shown below: 
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     The sinc function      1 1 1
o o o o o o2 22sinc sint t t                       for sine-

wave signals of {short} time duration o o o o o1 , 2 ,3 ,4t       where o o1 f   and the 
corresponding # of cycles of oscillation o o 1,2,3,4cN t     are shown in the figure 
below. Note that the width of of the main peak (at of f ) depends inversely on the 
time duration ot of the signal, due to the uncertainty principle 1f t   . 
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Human perception of pitch also depends {~ weakly} on the loudness of the sound. 
  

  * Effect arises due to non-linearities in the f & I response of the human ear.   
  * Pitch (perceived f) changes as loudness increases – see graph below... 
  * Effect exists only for pure/simple tones (!!!) 
  * Complex tones show no perceived pitch changes with loudness! (why??) 
 

Two ears of same person may NOT perceive sound of a given frequency as having 
the same pitch!!! = DIPLACUSIS – happens only for diseased, and/or injured ears.  
 

For normal musical purposes, frequency and pitch are synonymous (usually)  
n.b. applies only to periodic sounds. 
 

Sound pulses are made up of a continuum of frequencies, sound pulses are thus 
anharmonic and hence have no characteristic frequency and/or pitch. 
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The human ear can discriminate changes in sound intensity levels/sound pressure 
levels/loudnesses  of JND 1 2L L L     ~1/2 dB; Our ability to do so also depends 

on frequency and sound pressure level/loudness: 
 

     A JND ~1/2 dB change in sound intensity level corresponds to a fractional 
change in sound intensity of I /I ~ 12%. Thus, due to the ~ logarithmic response 
of the human ear, it is not terribly sensitive to changes in the loudness of sounds. 
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     The typical human ear can discern changes in pitch/frequency at the  f ~ 3 Hz 
level in the frequency range ~ 30 1000 .Hz f Hz£ £  Again, has frequency dependence: 
 

Note that: 
 

At very low frequencies:           3 30       10%f fD =  ( ) 2 semitones ,  

Whereas at higher frequencies: 3 1000 0.3%f fD = ( ) 0.1 semitones  
 

A good musician can discern frequency changes significantly smaller than this – 
e.g. above  f   500 Hz:  0.03 semitone (i.e. 1 1000 0.1%f fD = )!!! 
 

 The human ear/brain is capable of detecting small changes in frequency!!! 
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     The human ear/brain is capable of perceiving a fundamental even when no 
fundamental is actually present!!! This is the so-called missing fundamental effect. 
 

    This effect is {again} a consequence of the non-linear response in/inside the 
human ear itself, and/or a non-linear response(s) in the human brain’s processing 
of frequency information – whenever e.g. a quadratic non-linear response exists 
(in any system), if two signals A and B with frequencies fA and fB are input to that 
system, then sum and difference frequencies (fA+ fB) and |fA – fB| are produced! 
Thus, e.g. a 2nd harmonic 2f1 and a 3rd harmonic 3f1 can produce a “missing” 
fundamental from the difference frequency, |3f1  –2f1| = f1 !!! For further details on 
distortion, read Physics 406 Lecture Notes on “Theory of  Distortion I & II”.  
 

     For some musical instruments – e.g. the trumpet, the oboe and/or the   
bassoon – the 2nd (or even 3rd and higher) harmonics can actually have a larger 
amplitude than that of the fundamental, however we perceive/hear the “note” that 
is played on the trumpet (and/or oboe,  bassoon) as that of the fundamental!!!  
 

     The harmonic spectra – aka power spectral density functions   . ppS f vs f  and 

associated {time-averaged} relative phase harmonic phasor plots are shown below – 
e.g. for the steadily-played notes A4 (440.0 Hz) played on the oboe, and F2 (87.3 
Hz) played on the bassoon: 
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Note that the vertical axes of   . ppS f vs f are displayed on a logarithmic scale. 
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