Pitch vs. Frequency:

Pitch = human ear's perception of frequency of a sound vibration
Low pitch \Leftrightarrow low frequency of vibration/oscillation
High pitch \Leftrightarrow high frequency of vibration/oscillation
Q: Is the relation between \{perceived\} pitch vs. frequency linear?
$e . g$. a straight line $y=m x+b$ relation? A: No... See figure below:
Define frequency "units" associated with $\underline{\text { subjective }}$ pitch $=\underline{\text { mels }} \Leftrightarrow$ analogous to $\mathbf{H z}$.

The Audible Frequency Range of Human Hearing (when young):

$$
20 \mathrm{~Hz}<f<20 \mathrm{KHz} \quad(\simeq 3 \text { orders of magnitude })
$$

As we grow older, the ange of frequencies that we can hear decreases (both high and low frequencies - mostly on the high frequency end...)

Frequency ranges of musical instruments typically $\sim 100 \mathrm{~Hz}$ to \sim few KHz
e.g. guitar Low $\mathrm{E}=82 \mathrm{~Hz}$

High E $=330 \mathrm{~Hz}$
Piano highest note is ~ 4200 Hz
Very little above $\sim 10 \mathrm{KHz} \quad$ (squeals \& scrapes)
The human ear needs to be able to perceive a sound for minimum length of time Δt. In order to determine a pitch - i.e. pure/single-frequency tone - the minimum duration time Δt of the pure tone depends on its frequency:

For $f \sim 100 \mathrm{~Hz}(\tau \sim 10 \mathrm{msec}): t_{\text {min }} \sim 40 \mathrm{msec} \quad$ (~ 4 cycles)
For $f \sim 1000 \mathrm{~Hz}(\tau \leq 1 \mathrm{msec}): t_{\text {min }} \sim 13 \mathrm{msec} \quad$ (~ 13 cycles)
The minimum duration time Δt for human perception of a pitch is certainly in part due our ear \& brain processing, but for low frequencies especially, minimum time duration is also due to the uncertainty principle $\Delta f \Delta t=1$, which tells us that a pure tone/single-frequency sine wave signal of finite duration Δt in fact has a finite frequency spread Δf ! Only as the time duration $\Delta t \rightarrow \infty$ does $\Delta f \rightarrow 0$.

This can be seen by taking the Fourier transform of a finite-length \{time duration $\left.\Delta t_{0}\right\}$ pure-tone/single frequency $\left\{f=f_{0}\right\}$ time domain sinusoidal signal $p(t)=p_{0} \sin \omega_{0} t$ to the frequency domain $p(f)$:

$$
\text { If } p(t)=p_{0} \sin \omega_{0} t=p_{0} \sin 2 \pi f_{0} t \text { for }|t| \leq \frac{1}{2} \Delta t_{0} \text {, and: } p(t)=0 \text { for }|t|>\frac{1}{2} \Delta t_{0} \text {, and }
$$ defining the \{rectangular\} window function $\mathrm{w}(t)=1(=0)$ for $|t| \leq \frac{1}{2} \Delta t_{\mathrm{o}} \quad\left(|t|>\frac{1}{2} \Delta t_{\mathrm{o}}\right)$, respectively, then:

$$
p(f)=\int_{t=-\infty}^{t=+\infty} p(t) \cdot \sin \omega t d t=p_{0} \int_{t=-\infty}^{t=+\infty} \mathrm{W}(t) \cdot \sin \omega_{0} t \cdot \sin \omega t d t=p_{0} \int_{t=-\frac{1}{2} \Delta t_{0}}^{t=+\frac{1}{2} \Delta t_{0}} \sin \omega_{0} t \cdot \sin \omega t d t
$$

Using the trigonometric identity $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$:

$$
p(f)=\frac{1}{2} p_{0} \int_{t=-\frac{1}{2} \Delta t_{0}}^{t=+\frac{1}{2} \Delta t_{0}}\left[\cos \left(\omega-\omega_{\mathrm{o}}\right) t-\cos \left(\omega-\omega_{\mathrm{o}}\right) t\right] d t=\frac{1}{2} p_{\mathrm{o}} \Delta t_{\mathrm{o}}\left\{\frac{\sin \left[\frac{1}{2}\left(\omega-\omega_{\mathrm{o}}\right) \Delta t_{\mathrm{o}}\right]}{\left[\frac{1}{2}\left(\omega-\omega_{\mathrm{o}}\right) \Delta t_{\mathrm{o}}\right]}-\frac{\sin \left[\frac{1}{2}\left(\omega-\omega_{\mathrm{o}}\right) \Delta t_{\mathrm{o}}\right]}{\left[\frac{1}{2}\left(\omega-\omega_{0}\right) \Delta t_{\mathrm{o}}\right]}\right\}
$$

The sinc function $\operatorname{sinc}(x) \equiv \frac{\sin x}{x}\{n . b . \operatorname{sinc}(0)=1\}$, hence we can write $p(f)$ as:

$$
p(f)=\frac{1}{2} p_{0} \Delta t_{\mathrm{o}}\left\{\operatorname{sinc}\left[\frac{1}{2}\left(\omega-\omega_{0}\right) \Delta t_{\mathrm{o}}\right]-\operatorname{sinc}\left[\frac{1}{2}\left(\omega+\omega_{\mathrm{o}}\right) \Delta t_{\mathrm{o}}\right]\right\}
$$

The power spectral density functions $S_{p p}(f) \propto|p(f)|^{2}$ (a frequency domain quantity) for infinite length and finite length sine-wave signals are shown below:

- 3 -
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.

The sinc function $\operatorname{sinc}\left[\frac{1}{2}\left(\omega-\omega_{0}\right) \Delta t_{0}\right] \equiv \sin \left[\frac{1}{2}\left(\omega-\omega_{0}\right) \Delta t_{0}\right] /\left[\frac{1}{2}\left(\omega-\omega_{0}\right) \Delta t_{0}\right]$ for sinewave signals of $\{$ short $\}$ time duration $\Delta t_{o}=1 \tau_{0}, 2 \tau_{0}, 3 \tau_{0}, 4 \tau_{0}$ where $\tau_{0}=1 / f_{0}$ and the corresponding \# of cycles of oscillation $N_{c} \equiv \Delta t_{o} / \tau_{o}=1,2,3,4$ are shown in the figure below. Note that the width Δf_{o} of the main peak (at $f=f_{\mathrm{o}}$) depends $\underline{\text { inversely }}$ on the time duration Δt_{0} of the signal, due to the uncertainty principle $\Delta f \Delta t=1$.

Human perception of pitch also depends $\{\sim$ weakly $\}$ on the loudness of the sound.

* Effect arises due to non-linearities in the f \& I response of the human ear.
* Pitch (perceived f) changes as loudness increases - see graph below...
* Effect exists only for pure/simple tones (!!!)
* Complex tones show no perceived pitch changes with loudness! (why??)

Two ears of same person may NOT perceive sound of a given frequency as having the same pitch!!! = DIPLACUSIS - happens only for diseased, and/or injured ears.

For normal musical purposes, frequency and pitch are synonymous (usually) n.b. applies only to periodic sounds.

Sound pulses are made up of a continuum of frequencies, sound pulses are thus anharmonic and hence have no characteristic frequency and/or pitch.

The human ear can discriminate changes in sound intensity levels/sound pressure levels/loudnesses of $\boldsymbol{J N D}=\Delta L=\left|L_{1}-L_{2}\right| \sim 1 / 2 \boldsymbol{d B}$; Our ability to do so also depends on frequency and sound pressure level/loudness:

Fic. 2. Just noticeable difference in sound pressure level for three frequencies.

A $\boldsymbol{J} \boldsymbol{N D} \sim 1 / 2 \boldsymbol{d B}$ change in sound intensity level corresponds to a fractional change in sound intensity of $\Delta I / I \sim 12 \%$. Thus, due to the \sim logarithmic response of the human ear, it is not terribly sensitive to changes in the loudness of sounds.

The typical human ear can discern changes in pitch/frequency at the $\Delta f \sim 3 \mathrm{~Hz}$ level in the frequency range $\sim 30 \mathrm{~Hz} \leq f \leq 1000 \mathrm{~Hz}$. Again, has frequency dependence:

Note that:

At very low frequencies: $\quad \Delta f / f \simeq 3 / 30=10 \%$ ($\simeq 2$ semitones),
Whereas at higher frequencies: $\Delta f / f \simeq 3 / 1000=0.3 \%$ ($\simeq 0.1$ semitones)
A good musician can discern frequency changes significantly smaller than this e.g. above $\boldsymbol{f} \geq 500 \mathrm{~Hz}: \approx 0.03$ semitone (i.e. $\Delta f / f \simeq 1 / 1000=0.1 \%$)!!!
\therefore The human ear/brain is capable of detecting small changes in frequency!!!

The human ear/brain is capable of perceiving a fundamental even when no fundamental is actually present!!! This is the so-called missing fundamental effect.

This effect is \{again\} a consequence of the non-linear response in/inside the human ear itself, and/or a non-linear response(s) in the human brain's processing of frequency information - whenever e.g. a quadratic non-linear response exists (in any system), if two signals A and B with frequencies \boldsymbol{f}_{A} and \boldsymbol{f}_{B} are input to that system, then sum and difference frequencies ($f_{A}+f_{B}$) and $\left|f_{A}-f_{B}\right|$ are produced! Thus, e.g. a $2^{\text {nd }}$ harmonic $2 f_{1}$ and a $3^{\text {rd }}$ harmonic $3 f_{1}$ can produce a "missing" fundamental from the difference frequency, $\left|3 \boldsymbol{f}_{1}-2 \boldsymbol{f}_{1}\right|=\boldsymbol{f}_{1}$!!! For further details on distortion, read Physics 406 Lecture Notes on "Theory of Distortion I \& II".

For some musical instruments - e.g. the trumpet, the oboe and/or the bassoon - the $2^{\text {nd }}$ (or even $3^{\text {rd }}$ and higher) harmonics can actually have a larger amplitude than that of the fundamental, however we perceive/hear the "note" that is played on the trumpet (and/or oboe, bassoon) as that of the fundamental!!!

The harmonic spectra - aka power spectral density functions $S_{p p}(f) v s . f$ and associated \{time-averaged\} relative phase harmonic phasor plots are shown below e.g. for the steadily-played notes $A 4(440.0 \mathrm{~Hz})$ played on the oboe, and F2 (87.3 Hz) played on the bassoon:

Note that the vertical axes of $S_{p p}(f)$ vs. f are displayed on a logarithmic scale.

Legal Disclaimer and Copyright Notice:

Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any consequential, incidental, and/or other damages resulting from the mis-use of information contained in this document. The author has made every effort possible to ensure that the information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and International Copyright Laws. No portion of this document may be reproduced in any manner for commercial use without prior written permission from the author of this document. The author grants permission for the use of information contained in this document for private, noncommercial purposes only.

