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Analysis of music for its consonant and dissonant properties has been 
performed by philosophers, musicians, physicists, and mathematicians for 
centuries. Analysis of powerful models developed by these researchers can 
be simplified and strengthened using basic physical concepts. By 
observing standard musical waveforms on an oscilloscope and comparing 
them to standard mathematical models a new understanding involving the 
stability of the waveform can be compiled.  

 
 
I. INTRODUCTION 
 

Harmony is the property of music 
described as how well sounds coincide 
with one another. Dissonance is the 
aspect of harmony wherein sounds fight 
against one another. Consonance is the 
opposite; this occurs when sounds blend. 

Music is an assortment of sounds 
in varying degrees of harmony. These 
sounds have been studied for centuries to 
try to determine why the some sounds of 
music hold power over people. In many 
realms people have joined this pursuit: 
musicians create the music, philosophers 
muse at its influence on people, and 
mathematicians and physicists study its 
physical properties. 

Musicians study music on the 
basis of chords and harmonic structure. 
When looking at chords, flow of sound is 
a major consideration, as well as the 
small-scale movement of one tone to the 
next. These main topics of study are 
important contributions to composing 
new music and understanding musical 
literature form the past. 

Philosophers consider the general 
effect of music on people. They are 
concerned with the strength of chords and 
the meaning or feeling of specific chords 

to individual people. The research 
musical philosophers undertake is based 
primarily on subjective chord quality, not 
scientific principles. 

Mathematicians and physicists 
have tried to find a basic model for the 
consonance and dissonance of chord 
qualities. This has been accomplished 
through scientific study and mathematical 
extrapolation. These theories, however, 
have become difficult to understand and 
even more difficult to implement. 

 
II. BACKGROUND 
 
 Study has primarily involved the 
ratio of one note to another. These 
interval relationships are governed by two 
different historically developed tuning 
schemes. The first, the Pythagorean 
intervals, are based off of whole number 
ratios between notes in a scale. For 
example, a fifth is a ratio of 3 to 2 from to 
the fundamental or base tone. These 
values are shown in table 1 below.  

The second method, also in table 
1 below, is based on the twelfth root of 
two. For example, the third scale degree 
is the three-twelfth root of 2.  



 
Degree Pythagorean Root 
Root 1:1 1 
Minor Second 16:15 1.059 
Major Second 9:8 1.122 
Minor Third 6:5 1.189 
Major Third 5:4 1.260 
Perfect Fourth 7:5 1.335 
Tri-tone 13:9 1.414 
Perfect Fifth 3:2 1.498 
Minor Sixth 8:5 1.587 
Major Sixth 5:3 1.682 
Minor Seventh 9:5 1.782 
Major Seventh 15:8 1.888 
Octave 2:1 2 

Table 1: Frequency Ratios 
 
 When talking about musical 
structures, the ratios between the various 
scale degrees and the tonic is important. 
For a major fifth, the 3:2:1 ratio defines 
the relationship. For something like a 
major chord (the first, major third, and 
perfect fifth) the relationship is a 6:5:4:1 
ratio. (3:2 is converted to 6:4)  

The major research addressed in 
this study was Leonhard Euler’s study of 
consonance. He categorized chords of 
two or more sounds into what he deemed 
“degrees of sweetness”. His 
categorization is based on the lowest 
common multiples of the scale degrees of 
the notes within 
the chord and 
putting them into 
specific categories. 
These categories 
are organized from 
the smoothest 
sounds to the most 
dissonant, as 
shown in Table 2. 

The first 
degree consists of 
only the unison 
interval as these 

two waves align completely. The second 
degree consists of the octave, where the 
two waves are aligned such that one is 
exactly twice the frequency of the other.  

Then as the degrees of sweetness 
then increase the lowest common 
multiples of their ratios are organized 
according to an unstable naming scheme. 
The scheme that was used by Euler is 
generalized to a scheme of the multiples 
of the prime factors of the ratios as 
shown: 
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 For example, the fifth will be 
(1*3-1)+(1*2-1)+1=4. The fifth is found 
at Euler’s degree of sweetness four. 

The problem with this method lies 
in higher complexity chords. The 
generalized scheme is difficult to perform 
for all chords. Euler has supplied a table 
of the various elements as shown, but his 
calculation scheme is not easily 
computable. Given any higher degree 
chord, for example a seventh chord, the 
lowest common multiple fits into Euler’s 
table properly, but the scheme for 
deriving that place in the table breaks 
down.  

Major seven chords consist of a 
root, major third, fifth, and major 

Table 2: Euler’s Chart of Lowest Common Multiples and Degrees of Sweetness. 



seventh. The math according to Euler is 
as follows: 

3 2

6 2 2

LCM(1:8:10:12:15) 120
Factorization:1, 2 , 2*5, 3*2 , 3*5
Simplifies to: 1, 2 , 3 , 5  
Degree (1*1 1) (6*2 6) (2*3 2) (2*5 2) 1

0 6 4 8 1 19

=
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This chord is supposed to fit into 
degree 10, but seems to fit into degree 19 
when calculated. 

 
III. METHODS 

 
Two main methods were 

employed to look at possible physical and 
mathematical relationships between 
tones. The first method employs a unity 
gain op-amp connected to function 
generators and an oscilloscope while the 
second is a purely mathematical 
exploration of Euler’s basic concepts and 
ideas. 

The basic construction of the op-
amp is illustrated in figure 1.  

 
   Figure 1: Op Amp Diagram 

Overall, the connections are based 
on the setup in figure 2. The op-amp is 
housed in the aluminum box adjacent to 
four input function generators. The output 
of the op-amp is then connected to the 
oscilloscope to view the summed wave. 

This setup was to observe the 
waveform of summed waves such as 
intervals and chords. The general 
relationships of tones, such as a root and 
fifth (1 and 1.5 times a fundamental) are 
input from two of the signal generators to 
the op-amp, and, in turn to the 
oscilloscope. Once the superposed wave 
is apparent on the scope, a physical 
property comparable to Euler’s 
mathematics may be observed. 

The other method involved 
finding a mathematical explanation for 
Euler’s formulas that correlates with a 
physical idea. This only requires pen, 
paper, and a calculator. In general, this 
method looked at the Lowest Common 
Multiples of the component frequencies 
and looked for ways of fitting them to 
Euler’s scheme. 

 
IV. RESULTS AND DISCUSSION 

 
In general, the sweetness of a 

sound is its quality of smoothness. Euler 
used this as the name for his ideas, but his 
mathematics is in trouble. Using physics, 
however, a simpler solution was found. 
The stability of a wave is in direct 
relation to its smoothness in time. 
Therefore, physically speaking, the 
smoothness of the sound is determined by 
the stability the wave exhibits. 

The best way of looking at the 
stability of waves is to compare physics 
to what Euler was trying to do. The 

Figure 2: Observational Setup 



method of finding the lowest common 
multiple was just another way of finding 
out how many repetitions of the 
fundamental frequency were required 
until the entire pattern repeated itself. For 
example, a simple octave will repeat 
every two cycles of the fundamental 
whereas a fifth will repeat every three 
cycles. This is a direct correlation to 
Euler’s work.  

The difference between the 
physical and mathematical observations 
is the end classification. As a set of 
sounds requires many more repeats to 
coincide or has a very irregular cycle, it is 
a higher complexity then something that 
repeats readily and has a simple 
symmetric waveform. This comparison 
does not provide for an absolute scale, 
but provides for a way to meaningfully 
compare sounds without getting bogged 
down in classification. This differs from 
the mathematical calculations in this 
respect. 
 
Problems: 
 Unfortunately, the oscilloscope 
method is very difficult to use. The signal 
generators do not hold steady at the 
desired frequency, so the summed signal 
does not hold steady. Therefore, only the 
general idea of the wave can be 
understood from looking at the signal this 

way. This means the mathematical 
approach is absolutely necessary. 
 
V. CONCLUSIONS 

The stability of a wave is the 
determination of sweetness. Complex 
sounds shift and grind to people’s ears 
sounding unpleasant, whereas simpler 
sounds align and sound soothing, 
pleasing, and even. Eulers’ method takes 
this simple system but tries to make it too 
complex for meaningful analysis. In this 
situation no absolute scale exists, but a 
relative scale of wave repetition can serve 
as a basis for comparison of soothing and 
rampantly grinding sounds. Euler’s chart 
of multiples is a good basis for 
comparison, but not realistic to derive for 
an arbitrary complex chord.  

Overall, Euler’s methods make a 
definite method of classification for 
musical chords. Unfortunately, this 
method is difficult to understand and 
reproduce. Therefore, a better method 
using physics was found. Euler’s methods 
aligned with easily understood physics, 
and thusly it can be explained. 

The longer it takes a wave to 
repeat, the harsher it sounds to the ear. 
The method of Euler’s classifications fits 
in with this method, and thusly it is a 
simpler way of classifying them than 
looking at prime factorizations of each 
component wave. This discovery is a 
simpler method of understanding how a 
consonant sound can be pleasing and 
settled to the ear and a dissonant tone as 
grating. 
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