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Waves I: 
 

Introduction to Waves - Traveling Waves 
 

     In these lecture notes on waves, our goal is to understand the physical behavior of 
waves  - waves on guitar strings, sound waves in air, and also in dense media - such as 
vibrating guitar bodies, guitar necks, etc. Here we provide a brief review of the 
mathematics necessary to describe the behavior of such waves. 
 

     In general, a traveling wave is a disturbance that propagates in a medium (e.g. air, 
water, a guitar string, etc.) as a function of time, carrying with it energy, E and 
momentum p. As the traveling wave propagates, say along the x-axis, if the nature of the 
local disturbance - the displacement of atoms or molecules from their equilibrium 
positions - associated with the traveling wave at a given point, x at a given time, t is 
transverse (i.e. perpendicular) to the direction of propagation (say in the y-direction), as 
in the case of traveling waves on a string, we call such waves transverse traveling waves. 
In contrast to this, sound waves propagating e.g. in air or water (a fluid) are longitudinal 
traveling waves - the local disturbance (i.e. displacement from equilibrium position of air 
or water molecules) at a given point, x at a given time, t is longitudinal (i.e. parallel) to 
the direction of propagation. 
 

     In the figure shown below, we show a time sequence of the propagation of a transverse 
traveling wave, plotting the transverse displacement, y(x,t) = yo exp{(xvxt)2} for a 
gaussian-shaped transverse traveling wave, for t = 5 seconds, t = 0 and t = +5 seconds. 
Here, we have chosen the amplitude, yo (= transverse displacement from the equilibrium,  
y = 0 position) of this transverse wave, in SI (i.e. mksa {meters-kilograms-seconds-ampere 
units}) to be yo = 1.0 m, the longitudinal propagation velocity of the transverse traveling 
wave (the x-velocity of the wave as it propagates along the x-axis) to be vx = +1 m/sec. 
Note that this wave propagates in the +x direction as time increases. 
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     Alternatively, we could have instead chosen a gaussian transverse wave propagating 
in the x direction as time increases. Mathematically, such a wave would be described as 
y(x, t) = yo exp{(x + vxt)2}. The longitudinal velocity of such a left-moving wave on the 
x-axis is vx = 1.0 m/sec. 
 

     In general, when we speak of arbitrarily-shaped, propagating transverse traveling 
waves, for an arbitrarily-shaped right-moving transverse traveling wave, described by the 
function y(x, t) = f(x  vxt), the x-position of a given point on the waveform increases as 
time, t increases. This wave propagates with longitudinal wave velocity +vx m/sec in the 
+x-direction. For an arbitrarily-shaped, left-moving transverse traveling wave, described 
by the function y(x, t) = f(x + vxt), the x-position of a given point on the waveform 
decreases as time increases. This wave propagates with longitudinal wave velocity vx 
m/sec in the x-direction. 
 

     Note that the argument, (x  vxt) of the arbitrary function, f(x  vxt) that 
mathematically describes the transverse wave - as a function of x, for a given time, t, 
propagating with longitudinal wave velocity  vx in the x-direction is a constant.  
For example, if  (x  vxt) = constant = K, then as the time, t increases, then x must also 
increase, so that (x  vxt) = K. If (x + vxt) = K , then as the time, t increases, then x must 
decrease, so that (x  vxt) = K .  
 

     In the above figure with vx = +1 m/sec, for t = 5, 0, and +5 seconds, the peak of the 
transverse displacement of the right-moving waveform in each case was at (x  vxt) = K = 
5, 0, and +5 meters, respectively. However, for a different x-position along the 
waveform, say at x = 6, 1, and +4 meters, at times t = 5, 0, and +5 seconds, 
respectively, the argument of this function,  f(x  vxt) describing a right-moving gaussian-
shaped transverse traveling wave has (x  vxt) = K  = 1. Note also that (here) the 
argument, (x  vxt) of the function  f(x  vxt) that mathematically describes the transverse 
displacement of the waveform as a function of position, x and time, t has dimensions of 
length (here, in meters). 

 

     Note that for a transverse traveling wave propagating e.g. in the +x-direction, the 
actual motion of the displacement of the string is in the y-direction, transverse (i.e. 
perpendicular) to the x-axis of the string. Thus, for an infinitesimally small segment of 
the string, of length dx, the motion of that portion of the string is only up and down, in the 
y-direction as the transverse wave disturbance passes by, propagating along the string in 
the x-direction. If we imagine taking a snapshot at time t = 0, then for a transverse wave 
propagating in the +x-direction, the leading edge of the waveform is moving up, away 
from the x-axis at that instant in time, and the trailing edge of the waveform is moving 
down, back towards the x-axis, at that instant in time. The peak of the waveform at that 
instant in time is stationary - it is not moving up or down at all. 
 

Thus, we can describe the transverse motion of the string as a function of position and 
time with the notion of a transverse velocity, uy(x, t) of the string at any given point, x 
and time, t. Formally, the transverse velocity, uy(x, t) of the string at any given point, x 
and time, t is the time-rate of change of the y-position of the string at the point x at time t. 
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    Mathematically, from calculus, this is stated as the derivative of y(x, t) with respect to 
time, t - i.e. the time-rate of change of the transverse displacement, y(x,t). The transverse 
velocity, uy (x, t) at the point x at time t is defined as: 

    However, again from calculus, by the chain-rule of differentiation, we can write 
dy(x,t)/dt = df(x  vxt)/dt, thus: 
 

 

Here, we used the fact that the total derivative, df(x  vxt)/d(x  vxt) = partial derivative = 
f(x  vxt)/(x  vxt) = y(x, t)/x for time t held fixed (i.e. a constant), since the 
longitudinal velocity of the wave, vx is a constant. The longitudinal velocity of the wave, 
vx is defined as the ve of the time-rate of change of the right-moving waveform, i.e.  
vx  d(x  vxt)/dt. Note that the local slope of the string, m(x, t) = y(x, t)/x  y(x, t)/x 
= change in y per change in x, at the point, x at a given time, t.  
 

Thus, we see that the transverse velocity of the string, uy (x, t) at the point x and time t is 
the product of (the local slope of the string, m(x, t) = y(x, t)/x at the point, x at that 
time, t) and (the negative of the longitudinal velocity of the transverse wave, vx). Note 
that the partial derivative of y(x, t) with respect to x, y(x, t)/x means differentiating  
y(x, t) with respect to x (i.e. the change in y per change in x = “rise” over “run”) while 
holding the time, t fixed. Thus, the (local) slope of the string, m(x, t) = y(x, t)/x at the 
point, x is a snapshot of the string at the time, t. A right-moving, traveling triangle wave 
is shown in the figure below, which illustrates these concepts. 

Note that by convention, a right-moving (left-moving) traveling wave has longitudinal 
velocity, vx > 0 (vx < 0), respectively. 
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     For the right-moving gaussian transverse wave, y(x, t) = yo exp{(x  vxt)2}, with 
amplitude, yo  = 1.0 m, and longitudinal wave velocity, vx = +1.0 m/sec the following plot 
shows the transverse velocity of this wave, uy(x, t) =  (y(x, t)/x) vx as a function of the 
position, x on the string, for t = 5, 0 and +5 seconds. Reproducing this plot is left as an 
exercise for the interested reader - see exercise(s) at the end of these lecture notes. 

Harmonic Traveling Waves 
 

     Having discussed the general properties of traveling waves, we now focus specifically 
on harmonic traveling waves - i.e. waves that repeat themselves periodically in space and 
in time. Harmonic traveling waves are sinuosoids - and can be described either by sine or 
cosine functions - e.g. right-moving harmonic traveling waves can be mathematically 
described as: 

 

or: 
 

 

where the amplitude, A (= transverse displacement from equilibrium position, y = 0) has 
units of length (e.g. meters), the wavelength,  (in meters) which is the spatial repeat 
distance of a harmonic traveling wave; the period,  (units of time, e.g. seconds) is the 
repeat time of the harmonic traveling wave. Related quantities are the frequency, f = 1/ 
(units of cycles per second, or Hertz), the angular frequency,  = 2f (units of 
radians/second, often abbreviated as rad/sec), and the wavenumber, k = 2/ (units of 
inverse length, e.g. inverse meters = 1/m = m1) of the harmonic traveling wave. The 
longitudinal wave speed,  |vx| (= the magnitude of the longitudinal velocity, vx) is related 
to the frequency and wavelength of the harmonic traveling wave by the relation |vx| = f. 
Since  = 2f and k = 2/, we also have |vx| = (2f)*(/2) = /k. 

   ( , ) sin 2 sinx ty x t A A kx t       

   ( , ) cos 2 cosx ty x t A A kx t       
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     Snapshots of the transverse displacement, y(x,t) vs. position, x for a right-moving sine-
type harmonic traveling wave are shown in the figure below, for t = 5, 0 and +5 
seconds. The transverse displacement, y(x, t) = A sin(kxt) = A sin[2(x/  ft)], with 
amplitude, A = 1.0 m, wavelength,  = 4.0 m, longitudinal velocity vx = +1.0 m/sec and 
thus f = |vx|/ = 1/4 = 0.25 Hz.  

     The three sinusoidal curves in this figure may seem a bit confusing at first glance. 
Consider the crest at x (t = 5 sec) = 8.0 m associated with the snapshot of the dark blue 
sinusoidal traveling wave at t = 5 sec. Five seconds later, this crest (along with the rest 
of the sinusoidal traveling wave) has propagated to the right, a distance of x = |vx|t =  
1 m/sec*5 sec = 5.0 m. Thus, this same crest is now located at x (t = 0 sec) = 8.0 + 5.0 m 
= 3.0 m. This is the crest located at x(t = 0 sec) = 3.0 m on the magenta curve. Five 
seconds after this, at t = +5.0 sec, this same crest has propagated to the right another 
distance of x = |vx|t = 1 m/sec*5 sec = 5.0 m. This crest is now at x(t = +5 sec) = 3.0 + 
5.0 m = +2.0 m, i.e. the crest located at x(t = +5.0 sec) = +2.0 m on the yellow curve. 
 

     The transverse velocity, uy(x,t) of a sine-type harmonic traveling wave can be obtained 
from the transverse displacement, y(x, t). Since velocity (units = m/sec) is the change of 
position per unit change in time, the transverse velocity, uy(x,t) is the derivative, d/dt of 
position with respect to time. Then uy(x,t) = d/dt (y(x,t)) = dy(x, t)/dt = d/dt(A sin[kxt]) 
= A cos[kxt], since the derivative, d/dt of the sin(u(t)) function is d/dt(sin u(t)) = 
d(sin(u(t))/dt = cos u* du(t)/dt, by the chain-rule of differentiation, where u(t) = [kxt], 
thus du(t)/dt = . Snapshots of the transverse velocity, uy(x, t) as a function of position, 
x, for t = 5, 0 and +5 seconds are shown in the figure below. Again, for the crest of  
uy(x = 7.0 m, t = 5 sec) at x(t = 5 sec) associated with the snapshot of the dark blue 
sinusoidal traveling wave at t = 5 sec, after 5 seconds, at t = 0 sec, this crest associated 
with the dark blue uy(x,t) curve has also propagated to the right a distance x = |vx|t = 1 
m/sec*5 sec = 5.0 m. Thus, the velocity crest is now at x(t = 0 sec) = 7.0 + 5.0 = 2.0 m, 
on the magenta curve; and another t = 5 seconds later, this velocity crest is at +3.0 m on 
the yellow curve. 
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Note that the transverse velocity, uy(x, t) of a traveling harmonic wave is 90o out of phase 
with the transverse displacement, y(x,t) of the wave (i.e. ¼ of a cycle). This is because the 
cosine and sine functions are related to each other by a phase angle of  = 90o; cos  = 
sin( + 90o), and sin  = cos(  90o), where  is an arbitrary angle. These relations can 
be derived from the angle-addition formulae for the sine and cosine functions:  
 

sin(A  B) = sin A cos B  sin B cos A  and:  cos(A  B) = cos A cos B  sin A sin B. 
 

     Alternatively, we can show the transverse displacement, y(x,t) and the transverse 
velocity, uy(x, t) for the above sine-type harmonic traveling wave for fixed position,  
x = 5, 0 and +5 meters, as a function of time, t: 

 
____________________________________________________________________________________________________________ 



UIUC Physics 406 Acoustical Physics of Music 

 
 

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2000 - 2017. All rights reserved. 

7

 

     For the type of transverse waves we are used to dealing with on e.g. stringed 
instruments, such as the guitar, or violin, in order for propagation of transverse waves to 
occur on a string, the string must be stretched, with a tension (holding force), T. The 
mksa units of tension, T are the same as that for force, F - namely Newtons of force, or 
Newtons of tension. One Newton of force, by (Isaac) Newton’s second law, F = ma, is 
equal to the force, F associated with accelerating a mass, m = 1 kilogram (kg) by an 
acceleration, a = 1 m/sec2. Thus, one Newton = 1 kg m/sec2. 
 

The Wave Equation 
 

     There are many ways to derive the wave equation - a so-called 2nd order linear, 
homogeneous differential equation, which describes the propagation of waves associated 
with a physical system, for which there are no dissipative losses. For small amplitude 
transverse waves on a string, we can consider the balance of forces and accelerations 
associated with an infinitesimally small segment of the string, of length dx, as shown in 
the figure below, for a snapshot in time, e.g. at t = 0. 
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The force(s) acting on an infinitesimally small segment of the string, at t = 0 are shown in 
the figure below: 

 

     In the above figure, we have resolved the (vector) tensions, T and T' acting on each 
end of the infinitesimal segment of the string, into their x- and y-components. On the 
upper right-hand end of the string segment, Tx = +|T| cos , and Ty = +|T| sin . Note that 
the magnitude of the tension T, |T| = (Tx

2 + Ty
2)1/2, since cos2  + sin2  = 1. On the lower 

left-hand end of the string segment, T 'x = | T '| cos  ', and T 'y = | T '| sin  ', with the 
magnitude of the tension T ', | T '| = (T 'x2 + T 'y2)1/2, again since cos2  ' + sin2  ' = 1. 
 

    In the horizontal (x-direction), for small-amplitude transverse waves, there is no net 
force acting on the string - the horizontal tension components Tx and T'x balance (i.e. 
cancel) each other. Newton’s second law, Fx = max says that if there were a net force, Fx 
in the x-direction, then this string segment, of mass, m would accelerate in that direction, 
with acceleration, ax. Since the string segment does not accelerate longitudinally for 
transverse waves, there is no net longitudinal force acting on the string segment. 
Mathematically, this is stated as Fx = Tx + T'x = 0, i.e. Tx = T'x, or equivalently,  
|T| cos  = +|T'| cos '. 
 

     In the vertical (y-direction), for small-amplitude transverse waves, there is a net 
restoring force, Fy acting on the string, which acts in such a way as to move the string 
back towards its equilibrium (y = 0) position, for a non-zero transverse displacement of 
the string, y(x,t). This net transverse restoring force must be present, otherwise the string 
wouldn’t vibrate - transversely! The vertical tension components, Ty and T'y therefore do 
not cancel each other completely. Here, Newton’s second law, Fy = may = Ty + T'y  0 
says that there is a net acceleration, ay in the vertical (y-direction), transverse to the axis 
of the string. Then Fy = may = Ty + T'y = |T| sin   |T'| sin '  0. 
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     Now if the transverse waves on the string have small amplitude, this means that the 
angles,  and ' are quite small. Then in this regime, the small-angle approximation 
holds, such that sin   tan    , and sin '  tan '   '. But tan   |y(x+x, t =0)/x| 
and tan '  |y(x, t = 0)/x|. Thus, the magnitude of the slope of the string, |y(x, t=0)/x| 
is small everywhere on the string for small amplitudes. In other words, for all x,  
0  x  L, where L is the total length of the string, then |y(x, t=0)/x| << 1. Then for the 
snapshot of the string at t = 0:  
 

Fy = may = Ty + T'y = |T| sin   |T'| sin '  
     |T| y(x,t=0)/x (x+x)  |T| y(x,t=0)/x (x) 

 = |T| [y(x,t=0)/x (x+x)  y(x,t=0)/x (x)] 
 

This relation holds for any time t, not just for t = 0. The quantity in the square brackets: 
  

[y(x,t=0)/x (x+x)  y(x,t=0)/x (x)] = x /x (y(x,t)/x) = x (2y(x,t)/x2) 
 

by the definition of a double derivative. Thus, Fy = may  |T| x (2y(x,t)/x2). 
 

     If the string has mass per unit length,  = M/L (kg/m), where M = total mass of the 
string (in kilograms) and L = total length of the string (in meters), then, for small 
amplitude waves on the string (where y << x) the infinitesimal string segment, of 
length L = (x2  + y2)1/2  x has a mass m   x (kg).  

 

     Now the (transverse) acceleration in the y-direction, is ay(x, t) at the point x, for a 
given time, t, which by the definition of an acceleration, is the change in the velocity per 
unit change in time, is given by: 
 

ay(x, t) = uy(x,t)/t = /t(y(x,t)/t) = 2y(x,t)/t2. 
 

Then since Fy = may  |T| x (2y(x,t)/x2) and Fy = may =  x 2y(x,t)/t2, we see that: 
 

|T| 2y(x,t)/x2 =  2y(x,t)/t2 
 

Now, it turns out that the ratio of the magnitude of the tension, |T| to the mass per unit 
length of the string,  is actually the square of the longitudinal speed of propagation, |vx|2  
of the waves on the string, i.e.  

|vx|2 = |T|/   or   |vx| = (|T|/)1/2  
 

Thus, the wave equation for propagation of transverse waves on a string is given by: 
 

2y(x,t)/x2 = 1/|vx|2  2y(x,t)/t2 
 

     One can prove that right- and/or left-moving traveling waves, with transverse 
displacements y(x, t) = f(x  vxt) satisfy the above wave equation, by explicitly carrying 

out the differentiation on both sides of the wave equation, using the chain-rule of 
differentiation. We leave this as an exercise for the interested reader. 
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The Principle of Linear Superposition of Waves 
 

     The principle of linear superposition is a very powerful one. Mathematically, if y1(x,t) 
and y2(x,t) are both solutions to the wave equation, then it can be shown that the linear 
combination, ytot(x,t) = y1(x,t) + y2(x,t) is also a solution to the wave equation. Thus, if 
individual kinds of transverse traveling waves, y1(x,t) and y2(x,t) can propagate on a 
string, then it is also possible for the wave ytot(x,t) = y1(x,t) + y2(x,t) to propagate on this 
same string. We will see throughout this course, that the principle of linear superposition 
of waves manifests itself in many ways, and has many different consequences. In general, 
we could have: 

However, here we must remind the reader that one of our original constraints in deriving 
the wave equation was that the amplitudes of the wave(s) on the string were small. As 
long as the total/overall amplitude, ytot(x,t) resulting from superposing arbitrarily many 
individual waves is small, then the above mathematics is a good description of the 
physical system. If this is not true, then one needs to develop a more sophisticated 
theoretical description, valid for large-amplitude string vibrations. In this situation, use of 
the above formulae will be inaccurate. 
 

Reflection of Waves at a Boundary 
 

     What happens to a transverse traveling wave when it reaches a boundary, such as the 
end of a taught string? The answer depends on whether the end of the string is rigidly 
fixed (i.e. immovable) or is able to freely undergo transverse vibrations, under the 
transitory influences (i.e. forces) associated with the transverse traveling wave when it 
reaches this end point. 
 

A.) Reflection of Waves at a Fixed End 
 

     If the end of a taught string, e.g. at x = L is rigidly/immovably fixed, then 
mathematically, this means that the transverse displacement, y(x = L, t) = 0 at the point  
x = L for any time t. This mathematical statement of the (fixed) end condition, is 
generically known as a boundary condition associated with the transverse waves 
propagating on the string. An electric solid-body guitar or bass with a rigidly-mounted 
bridge attached to the body of the guitar is an example of fixed-end boundary condition 
for the reflection of transverse traveling waves on the strings of the guitar - or at least a 
good, first-order approximation of what actually happens. 
 

     If we have a right-moving transverse traveling wave in the shape e.g. of a gaussian 
pulse, described mathematically as y(x,t) = yo exp{(xvxt)2}, then as this waveform 
reaches the fixed endpoint at x = L, the boundary condition y(x=L, t) = 0 must be obeyed. 
As this pulse impinges on the fixed end support, the only way that y(x=L,t) = 0 can be 
obeyed is if this pulse is simultaneously reflected and polarity inverted. Reflection means 
that the right-moving gaussian-shaped transverse traveling wave, y(x,t) = yo exp{(xvxt)2} 
is converted into a left-moving gaussian-shaped transverse traveling wave, y(x,t) = yo 

exp{[(x2L)+vxt]2} at the point x = L; polarity inversion means that the left-moving 
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gaussian-shaped transverse traveling wave is “flipped over” on the y-axis, i.e. yo changes to 
yo. This is equivalent to a phase change, or phase shift of the reflected wave relative to the 
incident wave of 180o. Thus, the gaussian-shaped transverse traveling wave reflected from 
a fixed end located at x = L is of the form y(x,t) = yo exp{[(x2L)+vxt)2, after reflection. 
 

     Another equivalent way to think about this process is to imagine a special kind of 
mirror at the fixed endpoint x = L. As the right-moving gaussian-shaped transverse 
traveling wave, y(x,t) = yo exp{(xvxt)2} approaches the fixed end, an observer can see 
this wave directly, but looking in the special mirror, this observer also sees a left-moving, 
but polarity-inverted gaussian-shaped transverse traveling wave, y(x,t) = yo 

exp{[(x2L)+vxt)2 approaching the endpoint at x = L, but from behind the mirror. This 
left-moving, polarity inverted pulse, approaching from behind the end point is known as 
an image pulse. This way of thinking about the problem arises from use of the principle 
of linear superposition. The fixed-end boundary condition, ytot(x=L,t) = 0 for the incident, 
right-moving transverse traveling wave and its image pulse, independent of the detailed 
shape (transverse profiles) of these transverse traveling waves, is generically given by: 
 

ytot(x=L,t) = f(xvxt)|x=L + f(x+vxt)|x=L = 0 
 

where “|x=L” means evaluating these functions at x = L. Thus, the fixed end boundary 
condition, ytot(x=L,t) = 0 can only be satisfied if  f(xvxt)|x=L =   f(x+vxt)|x=L. 
 

     Note that the peak of the right-moving gaussian-shaped transverse traveling wave 
arrives at x = L when t = L/vx. The peak location, x of the right-moving gaussian pulse 
occurs at a given time, t when (xvxt) = 0. Thus, at t  = 0, x = 0. Note also that the left-
moving gaussian-shaped transverse traveling wave has had its origin shifted, such that 
when t = 0, its gaussian peak occurs at x = 2L, and when t = L/vx, its gaussian peak also is 
at x = L. The peak, x of this left-moving gaussian pulse occurs at a given time, t when 
[(x2L)+vxt] = 0. Thus, at t = 0, x = 2L for the left-moving gaussian pulse. 
 

     As time progresses, the two pulses move closer and closer to each other, passing 
through each other at x = L, and then keep on going. During the time that the two pulses 
overlap each other, the overall transverse displacement of the string at x = L is just the 
linear superposition of the two waves, i.e. 
 

ytot(x=L, t) = yright(x=L, t) + yleft(x=L, t) = yo exp{(Lvxt)2}  yo exp{(L+vxt)2} 
 

In general, for any point x, and time t, we will have, for reflection at a fixed end: 
 

ytot(x, t) = yright(x, t) + yleft(x, t) = yo exp{(xvxt)2}  yo exp{[(x2L)+vxt]2} 
 

Of course, what we see physically is only the portion of the string for the two waves with  
x < L. Mathematically, we can represent the wave that is reflected from a fixed end as an 
image wave, traveling in the opposite direction, and with inverted polarity, to the incoming 
traveling wave incident on the fixed end. Thus, because it takes a finite time for such a 
wave to undergo reflection from a fixed end, we can represent this process as a linear 
superposition of two waves, the original, right-moving transverse traveling wave, 
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superposed with a polarity-inverted, left-moving transverse traveling wave, which is a 
“mirror” image of the original wave. 
 

     The following plot shows a snapshot time sequence of a right-moving gaussian-shaped 
transverse traveling wave reflecting from a fixed end, located at x = L = 10 m. The 
amplitude of the pulse is yo = 0.5 m, the longitudinal wave speed vx = 1.0 m/sec. Note that 
the sequence of (11) time snapshots progress vertically downward in 1 second steps, 
starting at t = 5 sec, and ending at t = 15 sec. The left-moving image pulse is used to 
represent the reflection in the physical region (x  L = 10 m). Note, for the purposes of 
comparison with free-end reflection (see below), that the slope, ytot(x=L,t)/x is not zero 
at the fixed end, located at x = L = 10 m. 

B.) Reflection of Waves at a Free End 
 

     If the end of a taught string, again at x = L is held fixed longitudinally, but is freely 
able to vibrate transversely, for example, by attaching a horizontal string to the end 
support via a massless, frictionless ring, which can slide transversely (e.g. up and down) 
on a rigid, frictionless rod, the free-end boundary condition can be stated mathematically 
as the requirement that the slope, y/x of the transverse displacement at the point x = L 
for any time t must be zero, i.e. y(x=L,t)/x = 0 . Operationally, we first compute the 

t = 5 s 

t = 15 s 
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partial derivative, y(x,t)/x, then evaluate it at x = L. Physically, the requirement that the 
slope, y/x = 0 for reflection of waves at a free-end of a taught string simply arises 
because of the fact that no transverse force, Fy can exist at this kind of end point.  
 

     If we have a right-moving transverse traveling wave, again in the shape of a gaussian 
pulse, y(x,t) = yo exp{(xvxt)2}, then as this waveform reaches the fixed endpoint at  
x = L, the free-end boundary condition y(x=L,t)/x = 0 must be obeyed. As the pulse 
impinges on the free end support, the only way that y(x=L,t)/x = 0 can be obeyed is if 
this pulse is simultaneously reflected, but with the same polarity as the incident wave. 
Again, reflection means that the right-moving gaussian-shaped transverse traveling wave, 
y(x,t) = yo exp{(xvxt)2} is converted into a left-moving gaussian-shaped transverse 
traveling wave, y(x,t) = yo exp{[(x2L)+vxt]2}at the point x = L; maintaining the original 
polarity means that the now left-moving gaussian-shaped transverse traveling wave has 
the same phase as the original wave on the y-axis, i.e. the amplitude yo remains yo. Thus, 
the gaussian-shaped transverse traveling wave reflected from a free end at x = L is of the 
form y(x,t) = yo exp{[(x2L)+vxt)2, after reflection. 
 

     Again, an equivalent way to think about this process is to imagine a special kind of 
mirror at the free endpoint x = L. As the right-moving gaussian-shaped transverse 
traveling wave, y(x,t) = yo exp{(xvxt)2} approaches the free end, an observer can see 
this wave directly, but looking in the special mirror, this observer also sees a left-moving, 
gaussian-shaped transverse traveling wave, with the same polarity as the incident wave, 
y(x,t) = yo exp{[(x2L)+vxt]2} approaching the endpoint at x = L, but from behind the 
mirror. Again, this left-moving, same-polarity pulse, approaching from behind the end 
point is also known as an image pulse. The free-end boundary condition, ytot(x=L,t)/x = 
0 for the incident, right-moving transverse traveling wave and its image pulse, 
independent of the detailed shape (transverse profiles) of these transverse traveling 
waves, is generically given by: 
 

ytot(x=L,t)/x = f(xvxt)/x|x=L + f(x+vxt)/x|x=L = 0 
 

Where “|x=L” means evaluating the partial derivatives, /x of these functions at x = L. 
Thus, the free-end boundary condition, ytot(x=L,t)/x = 0 can only be satisfied if  
f(xvxt)/x|x=L =  f(x+vxt)/x|x=L. If we integrate this relation, i.e. 

we obtain the result: 
f(xvxt)|x=L = + f(x+vxt)|x=L 

 

     The following plot shows a snapshot time sequence of a right-moving gaussian-shaped 
transverse traveling wave reflecting from a free end, located at x = L = 10 m. The 
amplitude of the pulse is yo = 0.5 m, the longitudinal wave speed vx = 1.0 m/sec. Note that 
the sequence of (11) time snapshots progress vertically downward in 1 second steps, 
starting at t = 5 sec, and ending at t = 15 sec. The left-moving image pulse is used to 
represent the reflection in the physical region (x  L = 10 m). 
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     As time progresses, the two pulses move closer and closer to each other, passing 
through each other at x = L, and then keep on going. During the time that the two pulses 
overlap each other, the overall transverse displacement of the string at x = L is just the 
linear superposition of the two waves, i.e. 
 

ytot(x=L, t) = yright(x=L, t) + yleft(x=L, t) = yo exp{(Lvxt)2} + yo exp{(L+vxt)2} 
 

In general, for any point x, and time t, we will have, for reflection at a fixed end: 
 

ytot(x, t) = yright(x, t) + yleft(x, t) = yo exp{(xvxt)2} + yo exp{[(x2L)+vxt]2} 
 

In the figure below, note that the slope, ytot(x=L,t)/x is always zero for reflection of a 
right-moving traveling wave from a free end, located at x = L = 10 m. 

     One comment here is that wave reflection of any kind, from an end support, or arising 
from a discontinuity in the propagation medium (e.g, a sudden “jump” in the mass per 
unit length,  of a string, or e.g. the sudden change in sound waves propagating in the 
body and/or neck wood of a guitar, due to encountering the layer(s) of paint and/or 
lacquer on the guitar’s outer surfaces), is a macroscopic form of a scattering process.  
The above snapshot time sequences really show this quite clearly, at least to a particle-
physicist’s eye! At the atomic level, a very great many atoms of the medium (typically ~ 
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10251030 atoms, depending on the mass of the vibrating object) in which the wave is 
propagating are also vibrating (scattering), but with extremely small amplitudes. 
However, adding up all of the individual atomic contributions results in the macroscopic 
vibrations that we can see and hear with our own eyes and ears, respectively!  
 

Standing Waves 
 

     We now consider wave propagation on a taught string, of length, L, tension T and 
mass per unit length, , with fixed end supports at x = 0 and x  = L. If we consider 
sinusoidal-type transverse traveling wave solutions of the wave equation, mathematically, 
the most general possible solution of the wave equation for waves propagating on such a 
string consists of a linear combination of both right- and left-moving sine and cosine-type 
traveling waves - four total: 
 

 

Here, A, B, C, D are the amplitudes (in meters, m) of the four types of sinusoidal waves, 
the wavenumber, k = 2/ (in units of 1/m, or m1), where  is the wavelength (meters), 
associated with the frequency, f (Hz) and angular frequency  = 2f (radians/sec).  
The longitudinal wave speed on the string is |vx| = f = (T/)1/2 (m/sec). 
 

     First, we note that the sine and cosine functions, sin(x) and cos(x) have some useful 
(and important) reflection symmetry properties - namely that sin(x) = sin(x), and that 
cos(x) = +cos(x). When we change (i.e. reflect) x  x, the sin(x) function changes to 
sin(x), which changes sign, to  sin(x) under this reflection operation (by the “all-sin-
tan-cos” rule - the nemonic for which trigonometrical function is positive in each of the 
four quadrants associated with 0o  x  360o) . Thus, we say that the sin(x) function has 
odd reflection symmetry (because of the sign change of sin(x) = sin(x)). Because the 
cos(x) function does not change sign under this reflection operation, we say that the 
cos(x) function has even reflection symmetry (because cos(x) = +cos(x)). 
 

     The boundary condition, ytot(x=0, t) = 0 for the fixed end at x = 0, which must be 
obeyed for any time, t, can only be satisfied if 

 
We group like terms (sines and cosines) together: 

 

The only way that the boundary condition, ytot(x=0, t) = 0 for the fixed end at x = 0 can be 
satisfied for any time, t is if the amplitudes, C = A .and. B = D. Physically, this means 
that the amplitudes of the right- and left-moving traveling sine-waves must be equal, and 
be in phase with each other. Physically, the amplitudes of the right- and left-moving 
traveling cosine-waves must also be equal, but be out-of-phase with each other by 180o 
(use the angle-addition formula to show that cos(x + 180o) = cos(x)). 
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     The boundary condition, ytot(x=L, t) = 0 for the fixed end at x = L, which must be 
obeyed for any time, t, can only be satisfied if 

 
However, because of the requirement from the boundary condition ytot(x=0, t) = 0, that 
the amplitudes C = A .and. B = D, this can be rewritten as: 

 
Using the angle-addition formulae: 

and 

then: 

which becomes: 

The only way that the boundary condition, ytot(x=L, t) = 0 for the fixed end at x = L can be 
satisfied for any time, t is if sin(kL) = 0. This happens when kL = n, where n is a positive 
integer, i.e. n = 1, 2, 3, 4, .... etc. Then sin(n) = 0, and hence ytot(x=L, t) = 0 is satisfied 
for any time t. Since k = 2/ , the case n = 0 is not allowed, since the distance between 
end supports, L is finite, and n = 0 corresponds to  = . Physically, the requirement that 
the transverse displacement at x = L be zero is the same requirement as that for the 
transverse displacement at x = 0.  
 

     Note that the relation kL = 2L/  = n implies that  = 2L/n - i.e. that the allowed 
wavelengths associated with transverse waves propagating on this string of length L 
between the fixed endpoints x = 0 and x = L, can only be integer fractions of the total 
length, L of the string! We can denote these special wavelengths,  and wavenumbers, k 
by the subscript n, i.e. n = 2L/n and kn = n/L, n = 1, 2, 3, 4, .... etc. Since the 
longitudinal wave speed, |vx| = f = /k, then f = |vx| /n = n|vx| /2L; we can denote these 
special frequencies, f and angular frequencies,  = 2f as fn = n|vx| /2L and n = n|vx| /L,  
n = 1, 2, 3, 4, .... etc. 
 

     Thus, we discover that only certain wavelengths, corresponding to certain frequencies 
of sinusoidal-type transverse waves are able to propagate on a taught string of length, L, 
with fixed ends! These frequencies, fn = n|vx| /2L (wavelengths, n = 2L/n) with n = 1, 2, 
3, 4, .... etc. are integer multiples (integer fractions), or harmonics, of the fundamental 
frequency (fundamental wavelength), f1 = |vx| /2L (1 = 2L), respectively. Note that the 
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so-called n = 1 fundamental, with frequency, f1 = |vx| /2L, and wavelength, 1 = 2L is also 
known as the first harmonic. The 2nd harmonic, with n = 2, has frequency, f2 = |vx| /L = 2f1 
and wavelength, 2 = L = 1/2, and so on, for the higher harmonics, n = 3, 4, 5, .... etc. 

 
     Thus, we find that the taught string, of length L with fixed ends at x = 0 and x = L has 
normal modes of vibration, which for each such normal mode, the transverse 
displacement for an arbitrary point, x on the string, at any time t, is given by: 
 

 

     To connect this formula with the above formula for ytot(x, t), note that for a given 
normal mode of vibration, with harmonic number, n = 1, 2, 3, 4, .... etc. we have simply 
re-defined the amplitudes, such that An = 2A and Bn = 2B. 
  
     Note also that the physical amplitude of the nth normal mode of vibration is  
Cn = [An

2 + Bn
2]1/2 (n.b. this result follows from use of mathematics associated with 

complex variables -  discussed in detail in the lecture notes on Fourier analysis (aka 
harmonic analysis) of waveforms). Thus, we can alternatively write the transverse 
displacement, yn(x, t) as: 

 
where Cn is the amplitude of the nth normal mode of vibration, and n (n = n + 90o) is 
its phase, respectively. Note that by a suitable re-definition of the zero of time, e.g.  
nt = nt + n, or t = t + n/n, or,  instead, nt*  = nt + n , or t* = t + n /n, the 
above expression for the transverse displacement, yn(x, t) for the nth normal mode of 
vibration can be rewritten either as: 

or as: 

     The above mathematical expression(s) for the transverse displacement, yn(x, t) 
associated with the nth normal mode of vibration of a string of length, L with fixed end-
points at x = 0 and x = L describe a transverse standing wave. A standing wave is a wave 
that is not a traveling wave - it has no longitudinal motion, because, from the above 
mathematics, we see that a standing wave is in fact nothing more than a linear 
superposition of appropriately-phased right- and left-moving traveling waves of equal 
amplitude and frequency! The envelope of the standing wave as a function of the position 
x, over the interval 0  x  L along the length of the string is given by Cn sin(knx).  
The envelope of the standing wave is thus a snapshot of the standing wave, e.g. at t = 0. 
 

     The following plot shows a snapshot time sequence of one half of a cycle of 
oscillation of a transverse standing wave - the n = 1 fundamental mode of vibration on a 
string of length, L = 10 m, with fixed ends located at x = 0 and x = L = 10 m. The 
amplitude of the pulse is A1 = 1.0 m, the wavelength of the fundamental is  = 2L = 20 m, 
the longitudinal wave speed |vx| = 1.0 m/sec, thus the frequency is f = |vx|/ = 0.05 Hz. 
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Note that the sequence of (11) time snapshots progress vertically downward in 1 second 
steps, starting at t = 0 sec, and ending at t = 10 sec. A full cycle of oscillation of this 
string has a period,  = 1/f = 20 sec. 

 
     In general, it is entirely possible that many different normal modes of vibration could 
be simultaneously present on the string. In playing a guitar, this is in fact what actually 
happens! (We will discuss this in much greater detail in the lecture notes on Fourier 
analysis of waveforms.) The principle of linear superposition then tells us that the general 
solution of a vibrating string with fixed ends, with all possible normal modes of vibration 
present will have an overall transverse displacement that can be written as a sum (i.e. a 
linear superposition) of the individual transverse displacements, yn(x, t) of these normal 
modes: 

 

Thus, we can alternatively write the general solution, ytot(x, t) as: 
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where Cn is the amplitude of the nth normal mode of vibration, and n (n = n + 90o) is 
its phase, respectively.  
 

Wave Energy 
 

     As mentioned earlier, a wave e.g. on a string has associated with it energy, E and 
momentum, P. If we consider an infinitesimally small segment of string, of equilibrium 
length, x, then for small-amplitude vibrations, the mass associated with this string 
segment is m = x. The transverse velocity of this string segment is uy(x,t). The kinetic 
energy (in Joules) associated with this string segment, located at the point x along the 
string and at time t is given by: 

 

Transverse momentum and transverse velocity of a given string segment are related to 
each other by py(x,t) = m uy(x,t). The kinetic energy, KE(x,t) associated with a 
vibrating string segment is a maximum when the magnitude of the transverse velocity, 
|uy(x,t)| of the string segment is a maximum. For sinusoidal-type transverse waves on a 
string, this occurs when the transverse displacement of the string segment, y(x,t) = 0. 
 

     We can obtain the total kinetic energy associated with the entire vibrating string at a 
given instant in time, t by summing up (i.e. adding) all of the individual kinetic energy 
contributions associated with each infinitesimal string segment, over the entire length of 
the string: 

 

     In the limit that the lengths of individual string segments, x become truly 
infinitesimal, then x  dx, and the above summation formally becomes an integration 
over the length of the string, say from x = 0 to x = L: 
 

 

     The potential energy,  PE(x,t) (in Joules) of an infinitesimal string segment of 
length, x of  the vibrating string is associated with the (elastic) stretching of the string, 
under tension, T from its equilibrium position, y(x,t) = 0, to its transversely displaced 
position, y(x,t)  0. (At the atomic level, the macroscopic stretching of the string 
corresponds to atoms making up the string material stretching apart from each other by 
very small distances, a fraction of an Angstrom (1 Å = 10-10 m). Typical inter-atomic 
separation distances are on the order of ~ few Angstroms.) The displacement amplitude is 
again assumed to be very small, such that although the string stretches elastically, the 
string tension, T remains constant. Then the potential energy, PE(x,t) = TL, where L 
is the elongation (i.e. stretching) of the infinitesimal string segment, as shown in the 
figure below: 
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The elongation, L of this infinitesimal string segment in changing from its equilibrium 
position, y(x,t) = 0  to its transversely displaced position, y(x,t)  0 is given by 

 

Note that the mass, m = x associated with the (now stretched out) infinitesimal string 
segment does not change in the stretching process. 
 

For small amplitude vibrations the angle, (x,t) is very small. Because of this, we can 
approximate cos  by the first two leading terms of its Taylor series expansion: 

 

 where n! = n(n1)(n2)...1, and 0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 12, etc. Now because 
the angle,  is small, then tan   , but tan  = y/x = slope of the infinitesimal string 
segment. (The small-angle relation(s): tan   , and also sin    are again 
consequences of truncating the Taylor series expansions for tan  and sin  to the first 
terms in these expansions.)  Thus, for small amplitudes, (x,t)  y(x,t)/x = slope of the 
infinitesimal string segment.  
 

Thus, for small amplitudes, the elongation, L(x,t) of the string segment is given by: 

x 

y 

x1 x2 

y1 

y2 

y = y2  y1 

x = x1  x2 

 

x/cos  












 1

),(cos

1

),(cos
),(

tx
xx

tx

x
txL



 
2

1
!2

1....
!6!4!2

1
!2

1
cos

2264

0

2
2  


 





n

n

n
n

n

2

1
22

1
2

( , )
( , )

( , )
1 ....

x y x t
L x t x x

xy x t
x

             



UIUC Physics 406 Acoustical Physics of Music 

 
 

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2000 - 2017. All rights reserved. 

21 

where we have also used the approximation to the Taylor series expansion, 1/(1)    
for   0, in the above formula. 
 

Putting this all together, the potential energy, PE(x,t) of an infinitesimal string segment 
of length, x  for small amplitude string vibrations, is given by: 

 

The potential energy, KE(x,t) associated with a vibrating string segment is a maximum 
when the magnitude of the slope, |slope| = |y(x,t)/x| of the string segment is a 
maximum. For sinusoidal-type transverse waves on a string, this occurs when the 
transverse displacement, y(x,t) is a maximum. 
 

     We can again obtain the total potential energy associated with the entire vibrating 
string at a given instant in time, t by summing up (i.e. adding) all of the individual 
potential energy contributions associated with each infinitesimal string segment, over the 
entire length of the string: 

 
     In the limit that the lengths of individual string segments, x become truly 
infinitesimal, then x  dx, and the above summation formally becomes an integration 
over the length of the string, say from x = 0 to x = L: 

 

     As we have seen above, a standing wave in the nth normal mode of vibration has a  
transverse displacement as a function of position, x and time, t of: 

The transverse velocity, uyn(x,t) of the nth normal mode of vibration as a function of 
position, x and time, t is given by: 

 

The kinetic energy of the standing wave associated with the nth normal mode of vibration 
of the entire string, of length, L as a function of time, t is given by: 
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However, recall that for the nth normal mode of vibration, the wavenumber, kn = 2/n 
and n = 2L/n, n = 1, 2, 3, 4, ... etc. Thus, (2knL) = (kn2L) = [(2/n)*2L] = [(2n/2L)*2L] 
= 2n. But sin(2n) = 0 for n = 1, 2, 3, 4, ... etc. Thus, this integral = L/2. Hence, the 
kinetic energy of the standing wave associated with the nth normal mode of vibration of 
the entire string, of length, L as a function of time, t is 

 

Note that the last term on the right hand side of the above equation used the relation for 
the mass per unit length of the string,  = m/L. 
 

 The slope, yn(x,t)/x of the the nth normal mode of vibration as a function of 
position, x and time, t is given by: 

 

The potential energy of the standing wave associated with the nth normal mode of 
vibration of the entire string, of length, L as a function of time, t is given by 

 

Now the integral 

Thus, from the above, we know that this integral = L/2. Hence the potential energy of the 
standing wave associated with the the nth normal mode of vibration of the entire string, of 
length L, as a function of time, t is 

 

Now, since the longitudinal wave speed, |vx| = n/kn, or kn = n/|vx|, then 

However, we also know that vx
2 = T/. Thus, the potential energy of the standing wave 

associated with the nth normal mode of vibration of the entire string, of length, L as a 
function of time, t is 

 

The total energy, En(t) (in Joules) of the standing wave associated with the nth normal 
mode of vibration of the entire string, of length, L as a function of time, t is 
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Note that the last term on the right hand side of the above equation used the trigonometric 
identity sin2 + cos2 = 1.  Thus, we discover that the total energy, En(t) of the standing 
wave associated with the nth normal mode of vibration of the entire string, of length, L as 
a function of time, t is a constant - the total energy, En(t) = En, i.e. it has no time 
dependence! Note also that the potential energy, kinetic energy, and total energy of the 
standing wave for the nth normal mode of vibration all vary as the square of the 
frequency, since n = 2fn, and as the square of the amplitude, Cn, and depend linearly on 
the total mass, m of the string of length, L. 
 

     The potential energy, PEn(t) kinetic energy KEn(t) and total energy En(t) associated 
with the nth normal mode of vibration of the entire string, of length, L as a function of 
time, t are shown in the figure below. The values used for making this plot were m = 1.0 
kg (L = 10 m), n = 1, 1 = 10.0 sec, f1 = 1/1 = 1/20 Hz, |vx| = 1.0 m/s (1 = 2L = 20 m), 
and C1 = 1.0 m. 

     At one instant in time, say at t = 0 sec in the above figure, when the transverse 
displacement of the string is a maximum, with zero transverse velocity - the total energy 
of the string is all in the form of potential energy. One-quarter of a cycle later at t = 5 sec, 
when the string has maximum transverse velocity, the transverse displacement, yn(x,t=5) 
= 0 = the equilibrium position of the string, and here the total energy of the string is all in 
the form of kinetic energy. Another one-quarter of a cycle later, at t = 10 sec, the 
transverse displacement of the string is again at a maximum (but is now on the opposite 
side of the equilibrium position, yn(x,t=5) = 0), with zero transverse velocity, the total 
energy of the string is again all in the form of potential energy. One further quarter of a 
cycle later, at t = 15 sec, the string has again zero transverse displacement, yn(x,t=15) = 0, 
but again has maximal transverse velocity, and again the total energy of the string is all in 
the form of kinetic energy. A further quarter of a cycle, at t = 20 sec, the string is back 
where it originally started, with maximum transverse displacement, again with zero 
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transverse velocity - the total energy of the string is all in the form of potential energy. 
And on and on, through each successive cycle. 
 

     The time-average values of the kinetic energy and/or potential energy of the standing 
wave associated with the nth normal mode of vibration of the entire string, of length, L 
are 

and 

 
This is because the time-averaged values of  sin2(nt) and cos2(nt) are (averaging over 
one cycle, of period n = 1/fn): 
 

and 

 
     If there are many normal modes of oscillation present as standing waves on a string, 
then the total energy, Etot summing over all modes is given by: 

 

The time-averaged total energy, <Etot> summing over all modes is given by: 

 

Note that the time-averaged total energy, <Etot> is not the same as the instantaneous 
energy, Etot because of how it is defined - the time averages of the kinetic and potential 
energy for each mode, <KEn(t)> and <PEn(t)> are carried out separately. Thus, Etot is also 
known as the peak total energy, while <Etot> = ½ Etot is known as the so-called  
root-mean-square, or rms total energy.  

Wave Power 
 

     The instantaneous power, Pn(t) (in Watts, or Joules/sec) associated with the nth normal 
mode of vibration of the entire string, of length, L at a given time, t in a standing wave is 
given by 

 

Note that the instantaneous power has no time dependence - it is a constant, independent 
of time. The instantaneous power is also known as the peak power. 
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     The time-averaged power, <P(t)> associated with the nth normal mode of vibration of 
the entire string, of length, L in a standing wave is given by 
 

 

Here again, the time-averaged power, <Pn> ) associated with the nth normal mode of 
vibration of the entire string, of length, L is not the same as the instantaneous power, Pn 
because of how it is defined - the time averages of the kinetic and potential energy for 
each mode, <KEn(t)> and <PEn(t)> are carried out separately. Thus, Pn is also known as 
the peak power, while <Pn> = ½ Pn is known as the root-mean-square, or rms power.  
 

     If there are many normal modes of oscillation present as standing waves on a string, 
then the total power, Ptot summing over all modes is given by: 
 

 

The time-averaged total power, <Ptot> summing over all modes is given by: 
 

 

Note that the time-averaged total power, <Ptot> is not the same as the instantaneous 
power, Ptot because of how it is defined - the time averages of the kinetic and potential 
energy for each mode, <KEn(t)> and <PEn(t)> are carried out separately. Thus, Ptot is also 
known as the peak total power, while <Ptot> = ½ Ptot is known as the root-mean-square, 
or rms total power.  
 
Exercises: 
 
1. On a sheet of graph paper, draw an arbitrarily-shaped waveform, y(x, t) = f(x  vxt) 

representing the transverse displacement, y(x, t=0)  of a right-moving traveling wave 
along the x-axis at time t = 0 - e.g. a triangular-shaped pulse. Having chosen the 
amplitude, yo and longitudinal velocity, vx of this traveling wave, draw where this 
waveform is e.g. when t = 1 second, t = 5 seconds, and/or t = 10 seconds. Verify that 
(x  vxt) = constant = K for a given point on the waveform for each choice of time, t. 

 
2. On a sheet of graph paper, draw an arbitrarily-shaped waveform, y(x, t) = f(x + vxt) 

representing the transverse displacement, y(x, t=0)  of a left-moving traveling wave 
along the x-axis at time t = 0 - e.g. a triangular-shaped pulse. Having chosen the 
amplitude, yo and longitudinal velocity, vx of this traveling wave, draw where this 
waveform is e.g. when t = 1 second, t = 5 seconds, and/or t = 10 seconds. Verify that 
(x + vxt) = constant = K for a given point on the waveform for each choice of time, t. 
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3. For a right-moving gaussian traveling wave, y(x, t) = yo exp{(x  vxt)2}, with 
amplitude, yo  = 1 m (= transverse displacement of the string from its equilibrium 
position), and longitudinal wave velocity, vx = +1 m/sec, show that the partial 
derivative of y(x, t) with respect to x, y(x, t)/x (which physically is the local slope of 
the string at the point x, at a given time t), is given by the expression y(x, t)/x = 
2(x  vxt) yo exp{(x  vxt)2}= 2(x  vxt) y(x, t). Then, using e.g. a spread-sheet 
program, such as Excel, or other mathematical software, make plot(s) of the 
transverse velocity of the right-moving gaussian traveling wave on the string, uy(x, t) 
=  (y(x, t)/x) vx, as a function of position, x, for times t = 5, 0 and +5 seconds. 

 
4. Show that a traveling wave (either right- or left-moving), y(x, t) = f(x  vxt) satisfies 

the wave equation, 2y(x,t)/x2 = 1/|vx|2  2y(x,t)/t2 by explicitly carrying out the 
differentiation on both sides of the equation, using the chain-rule of differentiation. 

 
5. After you have read through, learned and understood the contents of the lecture notes 

on Fourier analysis of waveforms, then come back to these lecture notes and derive 
the relation(s):  

 

from the relation: 

 
 
 
References for Waves and Further Reading: 
 

1. The Physics of Musical Instruments, 2nd Edition, Neville H. Fletcher and Thomas D. 
Rossing, Springer, 1997. 

 

2. The Acoustical Foundations of Music, John Backus, W.W. Norton and Company, 
1969. 

 

3. Mathematical Methods of Physics, 2nd Edition, Jon Matthews and R.L. Walker,  
W.A. Benjamin, Inc., 1964. 
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