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Waves II: 
 

Vibrations of Real Strings 
 

     Thus far, our discussion(s) of wave propagation on strings has treated them in an idealized 
manner - i.e. that strings, while able to withstand a tension T, are perfectly elastic/flexible 
entities, and have no dissipative losses and/or non-linear properties associated with them. We 
made these simplifications in order to gain an understanding of the basic phenomena associated 
with wave propagation on strings. Now we wish to refine our treatment of string vibrations, in 
order to achieve a more physically realistic mathematical description of string vibrations. 
 

Vibrations of Stiff Strings 
 

     Real vibrating strings on a guitar have a restoring force which is primarily due to the string 
tension, T. However, on heavier-gauge strings, the restoring force is also due to the stiffness of 
the string - it is not perfectly elastic. The wave equation we obtained in the previous lecture notes 
for vibrating strings did not take into account the possibility that the string could have a stiffness 
associated with it.  
 
     When a string of radius rstring bends in the process of vibrating (for small amplitude 
vibrations), the outer portion of the string is stretched slightly while the inner portion of the 
string is compressed slightly - the material of the string is in fact an elastic solid. Somewhere in 
between the outer and inner parts of the string exists a so-called neutral axis, whose length 
remains unchanged. A filament of the string located a distance z above (below) the neutral axis is 
stretched (compressed) by an amount   z  as shown in the figure below, for a small 

segment (of infinitesimal length dx) of the string: 
 

 
     The strain, S is the fractional change in length of the string segment, i.e. the strain is the ratio  
S = /dx  z  /dx. The incremental amount of force, dF required to produce this strain is: 
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where Ystring = Young’s modulus (ratio of stress/strain) associated with the material of the string 
(stress is the force per unit area that creates the deformation of the string) and dAfilament is the 
cross sectional area of the filament located a distance z from the neutral axis. 
 
     The moment of this force about the neutral axis is given by 
 

 
Thus, the total moment to compress/stretch all the filaments in the string is given by: 

 
The so-called radius of gyration, K of the cross section of the string is defined by: 

 
where Astring = r2

string is the cross sectional area of the string. For a cylindrical string of radius 
rstring, the radius of gyration of the string is K = rstring/2. 
 
The bending moment, M(x,t) of the string segment dx at the point x and time t is thus: 

 
since (x,t)/x  (2y(x,t)/x2) for small angles  (i.e. small amplitude vibrations of the 
string). 
 
     The bending moment, M(x,t) is not the same for every portion of the string segment. In order 
to keep the string in equilibrium a shearing force, Fs must exist with bending moment  
dM(x,t) = Fs(x,t)dx as shown for a “snapshot” of the string segment, dx in the figure below: 
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     The shearing force, Fs(x,t) is given by: 

 

     However, the shearing force, Fs(x,t) acting on the string segment is not constant either. The 
net shearing force, dFs(x,t) = (Fs(x,t)/x)dx produces an acceleration perpendicular to the axis of 
the string. The equation of motion of the string segment, dx of mass, dmstring is given by 
Newton’s second law, dFs(x,t) = dmstring a(x,t), were a(x,t) is the acceleration of the string 
segment at the point x at time t: 

 

 

This is a fourth-order differential equation, one which describes bending waves in a string (in the 
absence of tension in the string). The general solution of this differential equation has a complex 
transverse displacement, y(x,t) of the form: 
 

 

     Thus, with four (apriori unknown) constants we must have four boundary conditions at the 
ends of the string in order to determine what these constants are. There are two boundary 
conditions at each end of the string. For fixed end supports, the boundary conditions at x = 0 and 
x = L are y(x,t) = 0 and a(x,t) = 2y(x,t)/t2 = 0. 
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     However, for transverse bending waves in a string, the magnitude of the longitudinal velocity 
of propagation of such waves, vx

bend is not a simple relation, as in the case for transverse waves 
on an “ideal” string (where we found vx = /k). Here, we find that 

 
Thus, the longitudinal wave speed for bending waves on a string, vx

bend is proportional to the 
square root of the frequency! For wave propagation in which the wave speed is not independent 
of the frequency, but instead has a frequency dependence, we say that such wave propagation has 
dispersion. 
 

     A modified wave equation for a string with tension T and which has an additional term for 
describing the restoring force associated with bending stiffness of the string is given by: 
 
 

     This differential equation can be solved, e.g. for standing waves on a string of length L with 
fixed ends at x = 0 and x = L. The modes of vibration are as before: 

 
where n = 1, 2, 3, 4, ... However, the frequencies of vibration of the various modes are given by: 
 

where f1
o is the fundamental frequency of the string without stiffness and the constant,  is given 

by: 

 
     Finite stiffness in strings therefore raises the frequency of the string, slightly. Note that 
because of this, the harmonics of the fundamental will not be precisely integer multiples of the 
fundamental, for wavelengths that are integer fractions of the fundamental wavelength! Thus 
because the strings on a guitar have different thicknesses (gauges), there will be different 
amounts of stiffness associated with the strings. This is the primary reason for the need for 
separate adjustment of the bridge saddles on an electric guitar - in order for it to intonate 
properly when playing anywhere on the neck! 
 

Effect of Motion of the End Supports on Vibrating Strings 
 

     On either an acoustic guitar or an electrical guitar, the strings contact the guitar at the nut (the 
zeroth fret) near the top of the neck of the guitar, and at the bridge of the guitar. On an acoustic 
guitar, the (wooden) bridge rests on the top plate (soundboard) of the guitar body, which is 
usually made of e.g. a thin sheet of spruce wood, supported by braces inside the guitar. The 
wooden bridge of an acoustic guitar may also have a thin strip of bone, ivory or synthetic 
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material inserted into a length-wise slot in the bridge, which is where the strings make contact 
with the guitar. On an electric guitar, a “hard-tail” bridge assembly, usually consisting of a metal 
frame with individually adjustable bridge saddle is rigidly attached (via screws) to the body of 
the guitar, which often is a solid block of wood, such as alder, ash, mahogany, korina, poplar, 
etc. There also exist other kinds of bridge assemblies for electric guitars, e.g. vibrato bridges of 
various types, the design of which usually consists of a spring-loaded mechanical system that 
enables the guitar player to raise and/or lower the pitch (i.e. frequency) of the strings by pulling 
on a lever mechanism (or mechanisms). At the neck end of the guitar, the nut supporting the 
strings is again often made of bone, ivory or a synthetic material; sometimes even musical brass 
(also known as bell brass) is used for making the nut on a guitar. Some guitars, such as vintage 
(50’s and 60’s era) Gretsch guitars even used a “zeroth” fret as the nut of the guitar. 
 

     When a string undergoes transverse vibrations, there are time-dependent forces that act on the 
end supports of the string, in addition to the static tension, T of the string. 
If the end supports are perfectly rigid, then these forces are in fact of no consequence. However, 
on a real guitar, the end supports are not perfectly rigid. The bridge attached to the soundboard of 
an acoustic guitar can vibrate (differently) in three dimensions - because the wood of the 
soundboard, with its accompanying bracing is not perfectly rigid. Indeed, vibration of the 
soundboard of an acoustic guitar is required in order for it to produce its sound - via the 
acoustical cavity inside the body of the guitar! 
 

     Because of the grain structure of the spruce wood - usually aligned parallel to the strings of 
the acoustic guitar, the structural rigidity of the bridge-top plate assembly of an acoustic guitar is 
not the same when vibrating in three possible mutually-perpendicular directions. By conscious 
design, the bridge of an acoustic guitar vibrates most easily perpendicular to the plane of the 
soundboard of the guitar (= plane of the strings of the guitar), and to a lesser extent, along the 
string direction, and/or perpendicular to the strings, in the plane of the strings, enabling the 
efficient transfer of energy from the strings of an acoustic guitar to the (resonant) body cavity of 
the guitar, thereby enabling the sound of the strings to be amplified in a natural manner. 

 

     For an electric solid-body guitar, because of the fact that the wooden guitar body is so much 
thicker and thus much more massive than the soundboard of an acoustical guitar, the vibrations 
associated with the bridge of an electric guitar are considerably less than that associated with an 
acoustic guitar.  
 

     An electric guitar of necessity must use magnetically-permeable metal strings. As a 
consequence of this, the string tension, T associated with an electric guitar is ~ twice that of an 
acoustic guitar strung e.g. with nylon strings. The neck of an electric guitar is also usually 
considerably thinner, and therefore less rigid than the neck of an acoustic guitar. So much so, 
that almost without exception an adjustable truss rod (internal to the neck of an electric guitar) is 
used to counter the tensile forces of the strings in order to keep the neck from warping over a 
period of time. Thus, the neck of either an electric or acoustic guitar behaves as an axially-
loaded, cantilevered beam. Therefore, the nut attached near the top of the neck of any guitar will 
not be perfectly rigid as the strings of the electric guitar vibrate. The nut on an electric guitar will 
in fact vibrate more than that of an acoustic guitar because of the thinner neck, and also because 
of the increased tension, due to the use of magnetically-permeable metal strings - we will shortly 
see that the forces acting on the end supports are proportional to the string tension. 
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The Impedance of a Driven String 
 

     A guitar string that is excited purely by the vibrations of one (or both) of end supports - i.e. 
the bridge or the nut, is known as a driven string. Mechanical energy is input to the string 
vibration(s) from the vibrations of one (or both) of the end supports.  
 

     In order to discuss this phenomenon, we first consider some simplified physical situations. 
We will also use complex notation to discuss the mathematics associated with this phenomena - 
see e.g. the preceding lecture notes on Fourier analysis for a discussion on complex notation.  
 

     Suppose we have an infinitely long string, with tension T, and apply a sinusoidally time-
varying, complex transverse force of the form F(t) = |F|eit = |F|[cos(t)+i sin(t)] to the end of 
the string at x = 0, which is a  free (i.e. not fixed) end, as an approximation to e.g. a vibrating 
bridge or nut of a guitar, driving the string. The magnitude of this complex driving force is |F|, a 
real quantity (i.e. a simple constant). Since the string is infinitely long, we do not create 
transverse standing waves by driving the string from one end. Instead, transverse travelling 
waves are created by driving the free end of the string in this manner. Thus, the transverse 
displacement at a point x along the driven string, at time, t is given by: 

Mathematically, this represents a travelling wave moving to the right (i.e. increasing x) as time, t 
increases. Note also that the transverse displacement amplitude, yo is complex, i.e. yo = |yo|ei = 
|yo|[cos  + i sin ] where |yo| is the magnitude of the complex amplitude, yo and  is the phase 
angle, relative to the (complex) transverse driving force, F(t). Note also that we have the usual 
relations, the longitudinal wave speed, vx = /k, with  = 2f and k = 2/. 
 

     At the driven end of the string, located at x = 0, since this end of the string is assumed to be 
ideally free, there can be no net force acting on the string. Therefore the transverse driving force, 
F must balance the transverse component of the tension, Ty, i.e. F(t) = Tsin (t), which for 
small amplitude vibrations, corresponding to small-argument Taylor series expansions of sin (t) 
 tan (t)  (t)  y(x=0, t)/x at x = 0, thus the driving force, F(t)  T(y(x=0, t)/x) at x = 0. 
The slope, y(x=0, t)/x at x = 0 is  y(x=0, t)/x  = /x{y(x, t)}|x=0 = /x{yoei(tkx)}|x=0 = ik 
yoeit =  ik y(x=0, t), and hence F(t) = |F|eit  +ikT y(x=0,t) = ikT yoeit = ikT |yo|eieit = ikT 
|yo|ei(t+).  
 

     Thus, we see that |yo| = |F|ei/ikT = i|F|ei/kT. However, note that magnitudes of complex 
quantities a.) must be purely real (i.e. they cannot have any i’s in their mathematical expressions) 

and b.) non-zero magnitudes of complex  quantities must be positive. Therefore, the only way 
that the magnitude, |yo| can be purely real and positive is if ei/i = i ei = i [cos  i sin ] =  
i cos  + (i*i) sin  =  i cos   sin  = +1, or ei = e+i/2 = cos (/2) + i sin (/2) = i.  This 
requires the phase angle,  = 90o = /2. Thus, the complex transverse displacement: 
 
Note that at x = 0, the complex displacement y(x=0, t) = |F|/kT eit is 90o out of phase with the 
complex driving force, F(t) = |F|eit. 
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     The (complex) transverse velocity, uy(x, t) = y(x, t)/t of the string at the position, x and at 
time, t is therefore: 

Note that the complex transverse velocity, uy(x=0, t) = i vx |F|/T  is in phase with the driving 
force, F(t) = |F|eit. 
 

     We now define the complex mechanical input impedance, Zinput of the driven string (units of 
Newtons/(m/sec) = kg/sec) as the ratio of the complex driving force, F(t) to the complex 
transverse velocity, uy(x=0, t) at the driving point, x = 0: 

In this situation, the complex mechanical input impedance of an infinitely long, driven string is a 
purely real quantity. This impedance is purely “resistive” - not “reactive” (i.e. it has no 
imaginary part), and is also known as the characteristic impedance,  Zo = T/vx = (T)½ = vx of 
the infinitely long driven string. 
 

     The (complex) power, or time rate of energy transfer from the “free” end support at x = 0 to 
the string (units of Watts, or Joules/second) is defined by: 

Where uy*(x,y) is the complex conjugate of uy(x,t). In general, if z = x + iy = |z|ei = |z|[cos + 
isin], then z*  x  iy = |z|ei = |z|[cos  isin]. Here again, in this situation, the power is a 
purely real quantity. Note also that it has no time dependence. Thus, here in this situation the 
instantaneous power is constant. As a consequence of this the instantaneous power is also equal 
to the time-averaged power, here.  
 

     In general, the physical meaning of the real part of the complex power, P(t) is that Re(P(t)) is 
the rate of energy transferred from the power source to the string. We shall see below in the next 
example that the physical meaning of the imaginary part of the complex power, P(t) is that 
Im(P(t) is the rate of energy returned from the string back to the power source. 
  
     Next, we consider the (somewhat more physically realistic) case where the driven string has 
finite length (say, of length L). The string is again driven at x = 0 by the force F(t) = |F|eit. We 
assume that the string is fixed at x = L (i.e. the end support at x = L is infinitely rigid = infinitely 
massive). For an acoustic guitar (and also for a hollow-body electric guitar), we imagine the 
bridge to be the driven, “free” end at x = 0, and the nut to be the fixed end at x = L, since the 
vibrations of the nut on an acoustic guitar are so much less than at the bridge. For a solid-body 
electric guitar, we imagine the nut to be the driven, “free” end at x = 0, and the bridge to be the 
fixed end at x = L, since the vibrations of the bridge on an electric solid-body guitar are so much 
less than at the nut. Then the right-moving travelling waves created by the driven, “free” end 
support at x = 0 are reflected and polarity-flipped at x = L and converted into left-moving 
travelling waves. Since the initial right-moving traveling wave is a continuous wave-train of 
sinusoidal, time-varying travelling waves, then when the reflected, left-moving travelling waves 
overlap with the right-moving traveling wave, a standing wave is generated on the driven string. 
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     The most general form of the complex transverse displacement, y(x, t) of the standing wave is 
given by: 

where yoR = |yoR|ei is the complex amplitude of the right-moving travelling wave and yoL = 
|yoL|ei is the complex amplitude of the left-moving travelling wave. 
 

     At the driven end of the string, at x = 0, the complex driving force, F(t) must again balance 
against the transverse component of the tension, Ty(x=0, t) at x = 0, which again for small 
amplitudes, is Ty = T sin  T (y(x=0, t)/x), thus we must have 

Thus, we see that: 

 
     At the fixed end, x = L, the boundary condition on the transverse displacement is y(x=L,t) = 
0. Thus, 

 

This relation must hold for any/all times, t. Thus, we must have: 

 

i.e. this implies that yoR eikL = yoL e+ikL, or that yoR  = yoL e+2ikL. Plugging this result into the 
above driving force - tension balancing result, we see that 
 

or: 

 

since cos(x) = ½ [e+ix + eix], note also that sin(x) = ½i [e+ix  eix]. Then we find that 

 
Thus, the complex transverse displacement, y(x, t) of the driven string, at an arbitrary point, x, 
and time, t is given by: 
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Thus, the complex transverse velocity, uy(x, t) = y(x, t)/t of the driven string, at an arbitrary 
point, x and time, t is given by: 

 
Again, the complex mechanical input impedance, Zinput of the driven string at the driving point, x 
= 0 is given by: 

Note that here, for the driven free end-fixed end boundary conditions of this string, the complex 
mechanical input impedance, Zinput of the driven string at the driving point, x = 0 is purely 
reactive - i.e. it is purely imaginary! 
 

     The (complex) power, or time rate of energy transfer from the “free” end support at  
x = 0 to the string is given by: 

Here, the power is (also) purely reactive - i.e. purely imaginary, or 90o out of phase with the 
driving force. The physical meaning of this is the following. The driving force inputs energy into 
the string at x = 0, creating a right-moving traveling wave. The right-moving traveling wave 
propagates on the string until it reaches the fixed end at x = L, whereupon it is reflected and 
polarity-flipped, converted into left-moving traveling wave. The left-moving traveling wave then 
propagates back to x = 0, where it leaves the string, returning its associated energy to the power 
source. Thus, a given amount of energy is put into the vibrating string at x = 0 by the complex 
driving force, F(t), however a little while later, this same energy comes back and is returned to 
the driving force. Thus, for the equilibrium situation, no net energy is transferred to/from this 
string! 
 
     The driving force, F(t) has angular frequency,  = 2f. In principle, the free end support at x 
= 0 can be driven at any frequency, f. Because of the free end-fixed end boundary conditions at x 
= 0 and x = L, respectively, at certain driving frequencies resonances (maximum amplitudes) 
and anti-resonances (minimum amplitudes) in the transverse vibrations of the string of length, L 
will occur. However, because of the free end-fixed end boundary conditions, the modes of 
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vibration in this situation will be different than those associated with fixed end-fixed end 
boundary conditions. For free end-fixed end boundary conditions, we must have a displacement 
anti-node at the x = 0 free end (because the slope of the string at x = 0, y(x=0, t)/x = 0). At the 
x = L fixed end, we must have a displacement node y(x=0, t) = 0. In the figure below, we show 
the second lowest mode of vibration of a standing wave on a string with free end-fixed end 
boundary conditions. 
 

The transverse standing wave modes of vibration on a string with free end-fixed end boundary 
conditions are such that L = 1/41, 3/42, 5/43, 7/44, 9/45, ... i.e. L = (2n1)/4n, or wavelength, n = 
4/(2n-1)L, and wavenumber, kn = 2/n =  (2n1)/2L and frequency, fn = vx/n = (2n1)Vx/4L, with n = 
1, 2, 3, 4, ...  . 
 

     For driving frequencies, f = fn associated with the production of transverse standing wave 
modes of vibration on a string (i.e. resonances) with free end-fixed end boundary conditions, the 
complex mechanical input impedance, Zn

input of the driven string at the driving point, x = 0 for 
the nth mode of this type of transverse vibration is given by: 
 

because cot[(2n1)/2] = 0 for n = 1, 2, 3, 4, .... . Thus, at these resonant frequencies, the 
complex driving force, F(t) can very easily transfer energy from the transversely vibrating free 
end support to the string, generating a standing wave on the string at this same frequency. (This 
same energy will come back out of the string a little while later.)  
 

     One can also run this same process backwards in time (i.e. use the symmetry principle of 
time-reversal invariance): Conversely, if one plucks a string such that e.g. its fundamental, or 
one of the higher harmonics of the string vibrates at one of these resonant frequencies, the 
vibrating forces acting on this “free” end support will efficiently transfer energy from the string 
to the “free” end support at that vibrational frequency, causing it to vibrate, thereby 
draining/damping energy from the vibrating string. In other words, for a guitar with such a “free” 
end support, the sustain of this guitar will be very significantly degraded if the string has a 
vibrational mode at (or near) such a resonant frequency of a free end-fixed end support system - 
the “free” end being an approximation to the bridge on an acoustic (or hollow-body electric) 
guitar, or an approximation to the nut at the end of the neck on a solid body electric guitar, or e.g. 
a massless slide/bottleneck! 
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     The (complex) power, or time rate of energy transfer from the “free” end support at x = 0 to 
the string (or vice versa, for the time-reversed situation), at the resonant frequency, fn = vx/n = 
(2n1)Vx/4L, n = 1, 2, 3, 4, ...  is given by: 

 

     Of course, since we are driving the string with a finite force, we can’t possibly expect to have 
an infinite amount of energy/power returned to the power source, if it wasn’t put in, in the first 
place. The reason for this result is that we have implicitly assumed in this situation that the width 
of the resonances, fn are infinitely narrow, which is in fact not the case for real strings on a guitar 
- the widths of the resonances are finite. 
 

     If  the complex mechanical input impedance, Zn
input = 0 at a succession of resonant driving 

frequencies, fn = vx/n = (2n1)Vx/4L, n = 1, 2, 3, 4, ... how does the complex mechanical input 
impedance, Zinput behave in-between such resonances, say in- between the resonant frequencies fn 
= (2n1)Vx/4L and fn+1 = = (2n+1)Vx/4L? 
 

     When the frequency, f of the complex driving force, F(t) is precisely at a frequency, fm = 
mvx/2L for m = 1, 2, 3, 4, .... the complex mechanical input impedance, Zm

input of the driven string 
at the driving point, x = 0 will be Zm

input =  i , because then cot (m) =   for m = 1, 2, 3, 4, ... . 
The magnitude of the complex mechanical input impedance of the driven string, |Zm

input| =   when 
f = fm = mvx/2L for m = 1, 2, 3, 4, .... . These frequencies correspond to so-called anti-resonances. 
The free end support is vibrating up and down, transverse to the string at the frequency f = fm = 
mvx/2L for m = 1, 2, 3, 4, .... but because the complex mechanical input impedance has magnitude, 
|Zm

input| =   at such frequencies, no energy can be transferred by the driving force, F(t) from the 
driven free end of the string to the string at these anti-resonant frequencies!  
 

     Again, by time reversal invariance, if a plucked string has a fundamental, or one of the higher 
harmonics vibrates at one of these anti-resonant frequencies, fm = mvx/2L for m = 1, 2, 3, 4, ....  
of the “free” end support, there will be no energy transferred from the vibrating string to the 
“free” end support at such a frequency, thus the sustain of the string will be as long as in the case 
of fixed, perfectly rigid end supports at both ends of the string! 
 

     The complex power, P(t) for the anti-resonant frequencies, fm = mvx/2L for m = 1, 2, 3, 4, ....   
is given by: 

 

     The following figure shows a plot of the quantity -i Zinput = (T/vx) cot(kL) vs. kL for the case 
of free end-fixed end supports at x = 0 and x = L, respectively, with (T/vx) = 1.0.  
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It can be seen that from this curve that |Zinput| ~ 0 for much of the range of kL values, except near 
kL ~ m, m = 0, 1, 2, 3, 4, ... and that |Zinput| = 0 for kL = (2n1)/2, n = 1, 2, 3, 4, ... . 
 

A More Realistic Motion of the End Supports 
 

     If one of the end supports on a guitar - either the bridge or the nut at the end of the neck of a 
guitar is not completely rigid, or a slide/bottleneck of finite mass, M is used on the strings of the 
guitar, then this quasi-fixed/quasi-free end support will have associated with it a finite, complex 
impedance, Z = Zr + iZi,, with |Z| = (Z*Z)½  = [(Zr  iZi)(Zr + iZi)]½ = (Zr

2 + Zi
2 )½. If the so-called 

imaginary part, Zi (i.e. the out-of-phase component) of the complex impedance, Z is positive, the 
motion of this not-completely-rigid end support relative to the string at this point is “mass-like”, 
and the fixed end-fixed end resonances - transverse vibrational modes of the string, fn = vx/n = 
nvx/2L, n = 1, 2, 3, 4, ... will be slightly raised. If the so-called imaginary part, Zi of the complex 
impedance, Z is negative, the motion of the not-completely-rigid end support is “spring-like”, 
and the fixed end-fixed end resonances/vibrational modes of the string, fn = vx/n = nvx/2L, n = 
1, 2, 3, 4, ... will be slightly lowered as a result. The so-called real part, Zr (i.e. the in-phase 
component) of the complex impedance, Z is proportional to the rate of energy transfer from the 
string to the not-completely-rigid end support. 
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     Suppose the string with tension, T has a rigid, fixed end support at x = 0, but at x = L, this end 
support is not completely rigidly fixed, but instead, this end support behaves as if it is quasi-free, 
with a finite mass, M. Note that a perfectly rigid, fixed end support can be thought of as having 
infinite mass, M = . Then as the string vibrates transversely, for small-amplitude vibrations, it 
will exert a transverse force, Fy (t)  T (y(x=L, t)/x) on this quasi-free end support at x = L, 
of mass, M. By Newton’s second law (F = Ma), we have: 
Note that the acceleration, a of the mass, M at the end support located at x = L is the same as the 

transverse acceleration of the string, ay(x=L) = 2y(x=L,t)/t2 at this end support. This force will 
in general be complex. 
 
The (complex) transverse displacement of the string at an arbitrary point, x along its length, L at 
a given time, t is again given by: 
 

 
with yoR = |yoR|ei and yoL = |yoL|ei.We apply the fixed-end boundary condition at x = 0, namely 
that y(x=0,t) = 0, where: 
 

 
This can only be satisfied for any/all time(s) t, if yoR = yoL. Then the transverse displacement, 
y(x,t) of the string, for an arbitrary point, x and time, t is: 
 

 
Then: 

 
and: 

and: 
 

 

Inserting these relations into the above force relation at x = L, we have: 
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or: 
 

or: 

 

where we used the relations vx = /k, vx
2 = T/ and m = L = total mass of the string of length, 

L. The relation cot(kL) = (M/m)kL is a non-linear equation, known as a so-called transcendental 
equation - because it transcends known analytic mathematical methods for solving this equation. 
Before the age of computers, solving such equations could only be done in a reasonable amount 
of time by using graphical techniques! 
 

     In the figure below, the magenta curves are the graphs of cot(kL) vs. kL. The dark blue 
straight lines are the (M/m)kL vs. kL relations, for values of the slope of each straight line, 
(M/m) = 1, 2, 5 and 10, respectively.  

     The kL values where each of the dark blue straight-line relations (M/m)kL vs. kL intersect 
with each of the magenta cot(kL) vs. kL curves (shown by black dots) thus determine the 
vibrational modes of the string with one fixed end support at x = 0 and one quasi-fixed/quasi-free 
end support of mass, M located at x = L. For example, if the ratio of end support mass to the total 
string mass is (M/m) = 10, then k1L  , k2L  2, k3L  3, etc., or knL  n, hence kn  n/L, n 
= 1, 2, 3, 4, .... . (In reality, M >> m on a real guitar), except for the case of slide/bottleneck 
guitar, if the slide/bottleneck is e.g. made of thin glass or plastic. Recall that for fixed end-fixed 
end boundary conditions on the string (equivalent to M = , and hence (M/m) = ), that kn = 
n/L, n = 1, 2, 3, 4, .... .  Thus, we see from the above figure, that for finite mass, M of the end 
support located at x = L, that in fact kn > n/L, and therefore since kn = 2/n, then 2/n > n/L, 
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or n < 2L/n for a quasi-fixed/quasi-free end support of mass M located at x = L. A shorter 
wavelength, n  implies a higher frequency, fn associated with vibrational modes of a string with 
one quasi-fixed/quasi-free end support of mass M, in comparison to the vibrational modes 
associated with rigid/fixed (M = ) end supports at both ends of the string. 
 

     Note also that because of this non-linear relationship (cot(kL) = (M/m)kL), the frequency of the 
lowest mode (n = 1) is raised more from its (M = ) fixed end-fixed end support value than that of 
the higher modes (n > 1). Because of this, the frequencies of the higher (n > 1) harmonics will not 
be precisely at integer multiples of the fundamental (n = 1) - i.e. fn  nf1 for n = 2, 3, 4, ...!! 
 
     The complex input impedance of the string at this quasi-fixed/quasi-free end support located 
at x = L is given by: 

From the above transcendental equation, cot(kL) = (M/m)kL. Thus, the complex input 
impedance is 

Note that this “mass-like” impedance associated with the quasi-free end support at x = L is again 
purely imaginary, and as stated earlier, positive imaginary. The last term(s) on the right hand side 
of this relation may seem odd at first, but they aren’t. Removing common factors, we have 
[T/(mvx)]kL = , but since m = L, this is [(T/)/vx]k = , and since (T/) = vx

2, this is vxk = , 
and since /k = vx, then we simply find that 1 = 1! 
 

     The power transferred from the quasi-free end mass-like end support located at x = L to the 
string (or from the string to the quasi-free, mass-like end support, if time is reversed), is given 
by: 

Again, the power here is purely imaginary - the energy transferred from the vibrating string to 
this mass-like end support (or vice versa) is (eventually) returned back from the end support of 
mass, M to the string (or vice versa). We have not (yet) put in the physics of energy flowing 
from the vibrating string, passing thru such and exciting a quasi-free end support, and then 
flowing on to other portions of the guitar (or vice versa, for the time-reversed situation)! 
 

Damping Effects in Vibrating Strings 
 

     As we learned in the previous lecture notes on waves, a vibrating string has energy associated 
with it. This energy is imparted to the string at the instant it is e.g. plucked, say at time t = 0 sec. 
We all know that if we wait long enough, the string vibrations will slowly die out; eventually the 
string ceases to vibrate altogether. Thus, the energy that was initally imparted to the string by 
plucking it is dissipated. In fact, all of the initial energy associated with the vibrating string 
ultimately all winds up as heat, somewhere. Dissipation of the string’s energy is also known as a 
form of damping of the vibrating string. In general, whenever damping processes exist, 
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independent of the physical origin of the damping process, they will have an impact on the 
frequenc(ies) associated with the string vibrations. There are various physical mechanisms 
associated with dissipative losses of the string’s initial energy/damping of the string’s vibrations 
which we will discuss in turn, below. However, first we wish to discuss damping of the string 
vibrations in a general manner. 
 

     Consider a stretched string of length L and mass per unit length,  completely immersed in a 
viscous medium that provides a damping force, F on the string that is propotional to the 
transverse velocity of the string, uy(x,t). 
 

     The (generic) damping force, dFdamp(x,t) acting on an infinitesimal element, or segment, dx of 
the string at the point, x along the string at time, t is given by: 
 

 

where b is the constant of proportionality for the damping force. The minus sign indicates that 
the damping force always acts in such a way as to oppose the motion of the vibrating string. 
 

     The wave equation describing an infinitesimal element, dx of vibrating string in the absence 
of viscous damping, for small amplitude vibrations of the string is given by: 

 
or: 

or: 

 
     Mathematically, this wave equation, which describes the undamped vibrations of transverse 
waves on a stretched string is a so-called second-order, linear, homogeneous differential 
equation. It is a second-order differential equation because it has double derivatives of y(x,t), 
one of position, x (/x2) and the other, of time, t (/t2). It is a linear differential equation, 
because all terms in this equation have a linear dependence on y(x,t). It is a homogeneous 
differential equation because there are only the double-derivatives in this 2nd order linear 
differential equation - not single, or triple, quadruple etc. derivatives.  
 

In the presence of viscous damping of the string, the wave equation is modified: 
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or: 

 
or: 

 
     Mathematically, this wave equation, which describes the (viscously) damped vibrations of 
transverse waves on a stretched string is a so-called second-order, linear, but (now) 
inhomogeneous differential equation. This 2nd order linear differential equation is  
inhomogeneous because it has a term which is a single derivative of y(x,t) - the velocity-
dependent damping term on the right-hand side of the above equation. 
 
     The solution, y(x,t) of this 2nd order linear inhomogeneous wave equation that describes the 
behavior of e.g. viscously-damped right-moving traveling waves on the string is of the form: 
Plugging this solution in to the above wave equation, we obtain the so-called characteristic 

equation: 

Thus, it can be seen that the wavenumber, k’ associated with the viscously damped, right-moving 
traveling wave is complex -  i.e. it has a real part, k’R and an imaginary part, k’I: 
 

Note that the minus sign in the above formula is extremely important - for a right-moving 
traveling wave, the amplitude of this wave is exponentially damped as x increases (for a left-
moving traveling wave, the amplitude is exponentially damped as x decreases). 
 
Then k’2 = k’R

2  2ik’Rk’I  k’I
2, we plug this into the above characteristic equation, identify the 

resulting terms that are purely real, and those that are purely imaginary: 
 

 

We can then solve the two resulting quadratic equations for k’R and k’I with the physical 
constraint(s) that both k’R and k’I must be positive, and after some algebra, we obtain: 
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and: 

 

Now since: 
 

 

we see that the amplitude of the transverse displacement, y(x,t) associated with a right-moving 
transverse traveling wave on the string, vibrating in a viscous, dissipative medium will be 
attenuated to 1/e of its initial value (here assuming the wave originates at x = 0) in a 
characteristic distance x = 1/k’I. We therefore define this characteristic damping distance as the 
so-called attenuation length, atten  1/k’I: 
 

 

The phase speed, v’x (= longitudinal propagation speed) of this viscously damped right-moving 
traveling wave is no longer v’x = T/, because of the presence of damping. It is now v’x = /k’R. 
Note that when b = 0 (i.e. no viscous damping of the string) then k = k’R = /vx (since then v’x = 
vx = (T/)½ ), and k’I = 0. Thus,  

 
Thus, we see that in the presence of viscous damping (b  0) the phase speed/longitudinal wave 
speed, v’x < vx = (T/)½. 
 
     The characterstic damping time, t = damp in which the amplitude of the transverse wave is 
exponentially damped to 1/e = 1/e+1 = e1 =1/2.71828 = 0.36788 of its initial value is given by: 

 
Note that this damping time is valid not only for transverse traveling waves, but also for 
transverse standing waves. If the amount of viscous damping is small, i.e. b << , then using 
the Taylor series expansion (1+)½   1+ ½ for  << 1, the damping time, damp is: 
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     The frequency of vibration of transverse waves propagating in a viscous medium is also 
changed from its b = 0 value. If the amount of viscous damping is small, i.e. b << , then using 
the Taylor series expansion (1+)½   1+ ½ for  << 1, it can be shown that: 
 

and: 

 
Air Damping Effects of Vibrating Strings 

 

     In an electric guitar, or any stringed instrument there are in fact several dissipative 
mechanisms that are responsible for damping of the string vibrations. One such mechanism is 
due to viscous air-drag effects - the vibrating string(s) of a guitar do not occur in a vacuum - they 
occur in air, usually at atmospheric pressure (if at sea level). Microscopically, energy from the 
vibrating string is transferred to individual air molecules by their many collisions with the string 
as it vibrates. This is a statistical process. The vibrating string pushes air molecules out of the 
way as it vibrates - the air is essentially a viscous fluid, and has a viscous drag associated with it. 
 

     A string with either a transverse travelling wave or a transverse standing wave vibrates 
(transversely) back and forth in a plane. As it does so, it produces a compression wave in the air 
in front of it, and a rarefaction of the air behind it. From this, one might think that this would 
enable the vibrating string to couple extremely well to the air, and therefore act as a good 
radiator of sound waves. However, this is not the case, because the diameter of the string is so 
small in comparison to the wavelength(s) of sound in air. 
For example, electric guitar strings have diameters in the range e.g. ~ 0.009”0.046” (i.e. 
0.22861.1684 mm). The speed of sound in air, at sea level is vs ~ 330 m/s. The high-E string of 
a guitar has frequency fhi-E = 330 Hz. Thus, the wavelength in air associated with playing an open 
high-E string on a guitar is hi-E  = vs/fhi-E  = 1 m, which is much much greater than the diameter 
of the high-E string on a guitar. Since sound waves do indeed consist of compression & 
rarefaction of the air (i.e. local density perturbations in the air), the compression & rarefaction of 
air on the distance scale of the diameter of strings of a guitar is very inefficient at transferring 
sound energy from the string to the surrounding air - essentially at this distance scale, the air in 
the compressed region immediately ahead of the string, being pushed (i.e. compressed) by the 
vibrating string simply flows around the string to the backside of the string, where the air 
pressure is lower, thus cancelling out the sound even before it has time to radiate away! 
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     However, this does not mean that the vibrating string is not affected by the presence of the air 
around it. Indeed it is! 
 

     Nearly 150 years ago (in 1851), George Stokes [1] solved the problem of viscous air drag on 
a vibrating string. The viscous force on the string has two components. One is a mass-like load 
that lowers the vibrational mode frequencies of the string very slightly, the other force 
component produces an exponential decay of the amplitude with time. The frequency of 
vibration of the string in air is given by: 

where fo = frequency of vibration of the string in a vacuum; the parameter,  is given by: 

where air = density of air  1.205 kg/m3, (at T = 20o C, P = 1 Atm) uy(x,t) = transverse velocity of 
the string at the point x, at time, t; rstring = radius of string, Astring = r2

string, and: 
 

where *air  1.52  105 m2/sec is the kinematic viscosity of air, i.e. *air = air /air, where air  
1.832  105 kg/(m-sec) is the coefficient of viscosity of air. For a 0.010” diameter high-E string 
on a guitar, where fhi-E = 330 Hz, Mhi-E  0.44. For a 0.046” diameter low-E string on a guitar, 
where flo-E = 82 Hz, Mlo-E  2.35. The value(s) of  are extremely small, ranging from ~ 7.4  
105 for the high-E string to ~ 4.8  105 for the low-E string. Thus, the frequency shifts due to 
viscous air drag effects on the vibrating strings of a guitar are exceedingly small, on the order of 
~ 1011 Hz. 
     For  the range of string diameters and string vibration frequencies associated with stringed 
instruments, such as guitars, the viscous drag force, dFdrag(x,t) acting on a infinitesimal segment 
of string of length dx, at the position, x along the string at time, t does so in such a way as to 
always oppose the motion of the string, i.e. retarding its motion, as the string passes through the 
air. This drag force, dFdrag (x,t) acting at a point x on a vibrating string of length, L is given by: 
     The instantaneous power lost due to viscous damping of the vibrating string in air, dPdrag(x,t) 

associated with the string segment, of length, dx at the point, x, at time t is given by: 
     The power loss, dPdrag(x,t) is by definition the (time) rate of change of the total energy due to 

viscous air drag, dEdrag(x,t)/dt associated with the string segment of infinitesimal length, dx, at 
the point x, at time, t. Note that since the viscous drag force, dFdrag(x,t) acting on the string 
segment, dx is proportional to the transverse velocity of the string, uy(x,t) at the point x, at time, 
t, then the power loss and/or the rate of energy loss is proportional to the square of the transverse 
velocity, uy(x,t) at the point, x at time, t. 
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     The net viscous drag force, Fdrag (t) acting on the entire length, L of vibrating string at a given 
instant in time, t is obtained by summing up all the force contributions, dFdrag (x,t) from each of the 
infinitesimal string segments, dx along the vibrating string, from 0  x  L: 
 

 
Going to the limit of a true infinitesimal, when dx  0, this sum converts to an integral 
representation: 

 
Similarly, the instantaneous power loss, Pdrag (t)  for the entire length, L of vibrating string at 
time, t is given by: 
 

 
     For a given mode of vibration of the string, of frequency, fn the transverse displacement 
amplitude will decay exponentially with time, i.e. 

 

The decay time constant, n
air = the time for the transverse displacement amplitude, yon et/n 

associated with the harmonic, n of frequency, fn to fall to en/n = e1 =1/e = 1/2.71828 = 0.36788 
of its initial value, yon at t = 0. 
 

The decay time constant associated with air damping associated with a given mode, n of 
vibration of the string is given by: 

 

where string is the volume mass density (kg/m3) of the string, and 
 

 

     This decay time constant, n
air is linearly proportional to string, but depends in a more 

complicated manner on the string radius and frequency. The decay time constant, n
air  string 

r2
string at low frequencies - independent of fn, but n

air  string rstring /fn at high frequencies. Thus, 
the decay time due to viscous air-damping of the strings will be shortest at high frequencies, 
affecting the higher harmonics first, and then successively lower harmonics from the time the 
strings are initially plucked. 
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     In the figure below, we show the calculated decay time constant associated with air 
damping/air drag effects on vibrating steel strings of the electric guitar vs. string gauge, using the 
above formula, for air at 1 atmosphere of pressure (i.e. sea level) and temperature, T = 20o C. 

     The theory predicts a decay time in reasonable agreement with actual electric guitars for the 
low-frequency strings, but disagrees significantly for the higher frequency strings - the decay 
time here is not as short as the prediction would have you believe. Thus, for the smaller-gauge 
strings, the effect of viscous air damping is not as large as predicted! 
 

Internal Damping Effects of Vibrating Strings 
 

     The material used in making e.g. electric guitar strings - steel, stainless steel for plain strings, 
and steel, stainless steel wrapped with pure nickel or a nickel alloy for the wound strings - 
behave as elastic materials. The strings of a guitar, of scale length, Lscale each have their own 
radius, rstring (m), (volume) mass density, string (kg/m3). The ratio of stress (force per unit area, 
F/A) per unit strain (change in length per unit length, L/L) in the material is known as Young’s 
modulus, Y = (F/A)/(L/L) (units: Newtons/m2). 
 

     When a stress is applied to a material, an instantaneous strain occurs, but over a characteristic 
time scale, strain, the strain increases slightly. Depending on the type of string material, this 
second strain can be moderately large or extremely small - the associated time scale, strain can 
range from less than a millisecond to many seconds. 
 

     This relaxation behavior in strings can be represented mathematically by making Young’s 
modulus, Y complex - i.e. an in-phase, or real component, Y1 and a 90o out-of-phase, or 
imaginary component, Y2, relative to the phase of a vibrating string. Then Y = Y1 + iY2, where i 
1, and i  i = 1, i  i = +1. From the relaxation theory worked out by the Dutch physicist 
Peter Debye, the value of the out-of-phase/imaginary component of Young’s modulus, Y2 has a 
peak at the relaxation frequency fstrain = 1/strain. However, in a real material, there may in fact be 
several such relaxation times, associated with normal elastic bond distortions between atoms 
making up the material, as well as relaxation times associated with motion of dislocations in the 
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material and/or kinks in polymer chains (in the case of e.g. nylon strings, used in acoustic 
guitars). Typically, the ratio Y2/Y1 is often less than 104 in hard crystalline materials, such as 
metals - steel, etc, but can be as large as 101 =0.1 in some polymer materials. In general, this 
ratio is also temperature dependent.  
 

     Internal damping of string vibrations arising from these microscopic physical processes leads 
to an exponential decay time, n

internal of the transverse displacement amplitude(s) for the 
different modes of vibrations of the string, yn(x,t) = yo exp(t/n

internal) sin(knx) sin(nt): 
     This kind of damping is negligible in comparison to air damping for solid metal strings, but 

can be the dominant damping mechanism in gut or nylon strings used on acoustic and classical 
guitars. Note that this decay time is shortest at high frequencies. 
 

     There exist additional internal damping mechanisms. In metal strings, thermal conduction (i.e. 
conduction of heat) also results in damping of the string vibrations. However, again, this is a 
small effect. In compound strings - consisting of twisted fibers, or wound strings, there also 
exists internal friction due to the relative motion of the component parts. As strings age on the 
guitar, build-up of “grunge” on the strings from playing the guitar occurs - a combination of skin 
cells, finger grease, dirt and sweat, all of which can (and does) lead to significant damping of the 
string vibrations. These loss mechanisms are also frequency-dependent, in the same manner as 
the above-discussed loss mechanisms. 
 

Energy Loss Through the End Supports of the Strings 
 

     As we have discussed above, if the bridge or nut on a guitar is not perfectly rigid, then at 
certain resonant frequencies, fn = vx/n = (2n1)Vx/4L, n = 1, 2, 3, 4, ... energy can be transferred 
from the mode, n of the vibrating string to the quasi-free end support. In a real guitar, this energy 
can then be transferred to places elsewhere in the guitar, with a commensurate loss in sustain of 
the vibrating guitar string at this frequency.  
 

     In considering the energy of a quasi-free end support, it is easier to work with the complex 
mechanical admittance, Y  1/Z rather than complex mechanical impedance, Z. The complex 
mechanical admittance, Y = G + iB, where the real part of the complex mechanical admittance, 
Re(Y) = G, is known as the mechanical conductance. The imaginary part of the complex 
mechanical admittance, Im(Y) = B is known as the mechanical susceptance. 
 

     If the complex mechanical impedance, Z = R + iX, where Re(Z) = R, known as the mechanical 
resistance and Im(Z) = X, known as the mechanical reactance, then it can be shown that: 

 

and conversely, that: 
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Note the negative sign between the reactance, X and the susceptance, B formulae. Note also that 
the units of Z, R and X are kg/sec. The units of Y, G and B are therefore sec/kg. 
 

     For a given mode, n of a vibrating string on a guitar, which has a quasi-free end support 
located, say at x = L, which is now mechanically connected to other portion(s) of the guitar, then 
it can be shown that the transverse velocity of the quasi-free end support, located at x = L, for the 
mode, n of the vibrating string is given by:  
 

 

where Fny(t) is the vertical component of the force acting on the quasi-free end support located at 
x = L, associated with the vibrational mode, n. The dimensionless parameter,  is a constant of 
proportionality, and Gn is the conductance associated with that mode, n. 
 

     In general, it is very difficult to apriori reliably predict, in a “first-principles” manner, what 
the conductance, Gn, the transverse velocity uny(x=L,t) and transverse force, Fny(t) will be for a 
given vibrational mode, n for an actual guitar, be it an acoustic or and electric guitar. These 
things will depend on the details of the design and construction of the guitar, the totality of the 
materials used to build it - different kinds of wood, how they are oriented, various types of 
glue(s), the finishes used on the surfaces of the guitar, etc. It is easier, and more reliable to 
experimentally measure e.g. uny(x=L,t) and Fny(t), and then compute Gn (assuming  is known). 
 

     The decay time constant, n
support associated with energy loss through a quasi-free end support 

physically attached to other portions of the guitar, for a given mode of vibration, n is given by: 
 

If the conductance, Gn of the quasi-free end support is large for the vibrational mode, n of the 
string, then the decay time, n

support  is short for this mode. Note that this decay time varies 
inversely as fn

2, i.e. it has quite a strong frequency dependence, compared, e.g. to viscous air 
damping of the vibrating string. 
 

Magnetic Damping Effects of Vibrating Strings on Electric Guitars 
 

     The pickups on electric guitars have permanent magnets which magnetize the strings of the 
guitar. The material used for electric guitar strings therefore must be magnetically permeable - 
typically steel, stainless steel on the three higher, small-gauge plain strings, and steel or stainless 
steel core wrapped with either steel or stainless steel, or pure nickel or a nickel alloy on the three 
lower, larger gauge wound strings.  
 

     Interestingly enough, the magnetic field of the pole piece of the pickup induces a magnetic 
quadrupole field (i.e. a linear {N-S} + {S-N} configuration) in the magnetically permeable 
strings of an electric guitar! As shown in the figure below, there are two South poles induced in 
the string in proximity to the North pole of the rod magnet. Due to the magnetic permeability () 
properties of the electric guitar string, the string becomes a magnetic flux tube, confining the 
(majority of) magnetic field lines inside the string, thus connecting each South pole to its 
companion North pole, one at each end of the string!  
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     Using the approximation that the magnetic field of the permanent rod magnet of the electric 
guitar pickup is equivalent to that of a point magnetic dipole (which it is not, due to its spatial 
extent), the magnitude of the magnetic field intensity, |B(r)| associated with a permanent 
magnetic pole of the guitar pickup decreases ~ as the cube of the perpendicular distance, z from 
the end of the permanent rod magnet, i.e. |B(r)| ~ 1/z3. {Permanent magnets, due to their finite 
physical size (and H x D aspect ratio), do indeed have higher-order magnetic field multipole 
moments (magnetic quadrupole, octupole, etc.), however the B-fields associated with each of 
these higher-order moments decrease (significantly) faster than 1/z3.} 
 

     As an electric guitar string vibrates in the magnetic field of a pickup, because the string is 
made of a electrically conducting metal, the free electrons in the metal of the strings in proximity 
to the magnetic poles of the guitar pickups experience a force, known as the Lorentz force, due 
to the fact the string (and thus the free electrons in the metal of the string) is moving with 
transverse velocity, uy(x,t) in the magnetic field B(x,z=h) provided by the magnetic pole(s) of the 
guitar pickups, as shown in the figure below. 
 

     The Lorentz force is a vector force - it has both a magnitude and a direction, and is given by F 
= qv  B, where q = e is the electric charge of the electron, v is the velocity vector, v(x,t) = 
uy(x,t)y, where y is a unit vector in the +y direction, and B(x,y,z) = B(x,y,z=h)z near the magnetic 
pole of the pickup, and z is a unit vector in the +z direction (up). The direction of the Lorentz 
force acting on the free electrons is along the axis of the string (in the x direction), from 
application of the so-called “right-hand rule” in taking the cross product uy  B. Thus, the free 
electrons will collectively move along the axis of the string as a consequence of the Lorentz force 
acting on them in over the poles of the magnetic pickup(s). The “gas” of free electrons moving 
along the axis of the string due to the Lorentz force acting on them is an electrical flow of current!  
 

     Because the metal of the string has resistance, the “gas” of free electrons drift through the 
metal of the string along (i.e. parallel to) the axis of the string with a terminal velocity, vd = vdx. 
The resulting macroscopic current density, J = E = (1/)E (units = Amperes/m2) where  is the 
conductivity of the metal (units = Ohm1 m1),  = 1/ is the resistivity of the metal (units = 
Ohm-m) and E is the electric field in the metal, which arises from the Lorentz force acting on the 
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free electrons, since F = qE = qv  B. Thus, in our situation here, the electric field in the metal is 
given by 
 

E(x,y,z,t) = F(x,y,z,t)/q = uy (x, t)  B(x,y,z) 
 

Note that the electric field, E is anti-parallel to the Lorentz force, F for q = e. The current 
density, J is 
 

J(x,y,z,t) = E(x,y,z,t) = F(x,y,z,t)/q = {uy (x, t)  B(x,y,z)} 
 

The macroscopic current I = J .Astring, where Astring = r2
string n = cross sectional area of the 

string, and n is a unit vector perpendicular to the cross sectional area of the string. This 
motionally-induced macroscopic current, arising from the Lorentz force acting on the free 
electrons in the metal of the vibrating strings of the guitar near the poles of the magnetic pickups 
of the guitar is in fact a type of Eddy current, IEddy! 
 

     Note that because of the nature of the cross product v  B, in the Lorentz force equation, 
when v is perpendicular to B, this force is maximal. However, the Lorentz force  vanishes when 
v and B are parallel (or anti-parallel) to each other. Thus, the magnitude of the Lorentz force F = 
|F| = q|v  B| =qvBsin where  is the opening angle between v and B. 
 

     The amplitude of the Eddy current, |IEddy| induced in the vibrating string of a guitar, for a 
pickup located at xpu, is 
 

 
     In the figure below, we show the magnitude of the Eddy current, |IEddy| induced in each of the 
vibrating strings of a guitar, for open strings vibrating transversely in the plane of the strings, 
parallel to the body of the guitar, and perpendicular to the magnetic field(s) of the permanent 
magnets in the guitar pickups. As we have discussed in the 4th set of lecture notes on Fourier 
analysis, the neck pickup of an electric guitar is typically located at the anti-node of the 2nd 
harmonic, thus xpu = 5/8Lscale. For steel strings on an electric guitar, steel has a conductivity,  = 
1.1  107 Ohm1 m1. A typical magnetic field strength at the strings of a guitar, located ~ 4-5 
mm above the poles of a guitar pickup is B(z = 4-5 mm) ~ 200 Gauss = 0.2 kilo-Gauss = 0.02 
Tesla. 
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     It can be seen that the magnitude of the Eddy current induced in the strings of an electric 
guitar ranges from IEddy ~ 20 mA for the high-E string to IEddy ~ 115 mA for the low-E string. 
The increase in IEddy with string gauge is due to the cross sectional area term, Astring = r2

string 
term, which is quadratic in the string gauge ( = string diameter). However, IEddy also depends 
linearly on the string vibration frequency, f; thus the induced Eddy current in each of the strings 
is ~ linear with string gauge. 
 

     As a consequence of creating an induced time-dependent current, IEddy (t) flowing in the 
string, a time-dependent EMF (i.e. a voltage, or potential difference), (t) (units: volts) is also 
induced across the ends of the string, which is given by: 

 
where |uy(x, t)| is the magnitude of the transverse velocity of the string at the point, x at time, t, 
and |B(x)| is the magnitude of the magnetic field intensity at the point, x on the string and sin is 
the opening angle between the plane of the transversely vibrating string and the direction of the 
magnetic field intensity, B(x) of the permanent magnet at the point, x on the string. Because the 
magnetic field intensity decreases so rapidly in moving away in any direction from the 
immediate vicinity of the pole of the permanent magnet of the pickup, located directly 
underneath the guitar string, the bulk of the contribution of the integrand, |uy(x,t)||B(x)|sindx of 
the above integral occurs in the x-region of the string in the vicinity of the pole of the permanent 
magnet.  
 

     Since the permanent magnets of a e.g. a single-coil guitar pickup typically have a diameter, D 
~ 5 mm = 0.005 m = 5  103 m, the time-dependent EMF, (t) induced across the ends of the 
vibrating string is approximately (t)  |uy(xpu, t)||B(z=h)|D, for strings vibrating parallel to the 
plane of the guitar body. If the typical transverse displacement, y(x, t) of a guitar string has an 
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amplitude, |yo| ~ 1.0 mm = 0.001 m = 1  103 m, then e.g. for the fundamental mode of vibration 
of the high-E string, with fhi-E = 330 Hz, then y(x, t)|hi-E = yo sin(khi-E x)sin(hi-E t). The transverse 
velocity of the vibrating string, uy(x,t)|hi-E = /t[y(x,t)|hi-E] = hi-E yosin(khi-E x)cos(hi-E t). The 
neck pickup of an electric guitar is typically located at the anti-node of the 2nd harmonic, thus xpu 
= 5/8Lscale, and since hi-E =  2Lscale, khi-E = 2/hi-E = /Lscale and hi-E = 2fhi-E. The typical 
strength of the magnetic field intensity, B of a permanent magnet at the pole of the magnet is 
B(z=0) ~ 1.0 kilo-Gauss = 0.1 Tesla. The string of the guitar is typically located a few mm above 
the pole of the permanent magnet; the magnetic field strength |B(z = 4-5 mm)| at this point is 
typically ~ 20% of that at the pole of the permanent magnet, i.e. |B(z = 4-5 mm)| ~ 0.2|B(z=0)| ~ 
200 Gauss = 0.2 kilo-Gauss = 0.02 Tesla.  
 

     Putting this all together, the typical amplitude of the time-dependent EMF, || induced across 
the ends of the vibrating string of an electric guitar, for an electric guitar pickup located at x = 5/8 
Lscale from the nut of the guitar, with the string vibrating in the plane of the strings of the guitar 
(parallel to the body of the guitar, and perpendicular to the magnetic field of the poles of the 
guitar pickup) is given by: 

 

The EMF, || induced across the ends of each string of an electric guitar is shown below. 
 

     If the strings vibrate perpendicular to the plane of the guitar body - parallel to the magnetic 
field of the poles of the magnetic pickups of the guitar, no EMF is induced across the ends of the 
vibrating strings of a guitar - because sin = 0 in this situation. 
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     It can be seen from the above figure that the magnitude of the induced EMF, || is linear with 
frequency, f; thus the magnitude of the induced EMF, || has a quadratic dependence on string 
gauge/string diameter. 
 

     Because the metal of the vibrating string has a finite (but very small) electrical resistance, 
Rstring associated with it, the electrical energy associated with the induced Eddy current(s) 
flowing in the string is dissipated - ultimately, it is converted into heat energy. The instantaneous 
power loss, PEddy(t) due to the induced Eddy current(s) flowing in the string is given by: 
The (peak) power dissipation, or power loss due to Eddy currents in each of the strings of the 

guitar is shown in the figure below, for the same values of parameters as used in creating the 
above two figures. 
 

     Note that the (peak) power dissipation is approximately constant with string 
gauge/fundamental frequency, PEddy ~ 4-6 W, and depends quadratically on B(z = h), since both 
IEddy and ||. Note also that the time-averaged, or root-mean-square (rms) power dissipation, 
<PEddy> is half of the peak power dissipation value. 
 

     The vibrational energy of the guitar strings is slowly dissipated via magnetically-induced 
Eddy current power losses in each of the strings. The vibrations of the guitar string are thus 
magnetically damped. The amplitude of the string vibrations slowly decays (exponentially) with 
time due to magnetic damping of the strings by the strings vibrating in the magnetic field(s) of 
the guitar pickups, with a characteristic time constant, Eddy which is given by:  
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     Note that the magnetic damping time constant, Eddy  varies quadratically with the strength of 
the magnetic field at the location of the strings vibrating over the magnetic poles of the pickup 
(z=h). Note also that Eddy has only a weak dependence on the frequency of vibration, f. 
Numerically, the above formula gives a characteristic damping time of Eddy ~ 3-4 seconds for 
the strings of a typical electric guitar. 
 

     The transverse displacement, yn(x,t) of a given mode, n = 1, 2, 3, 4, ... of vibration of the 
guitar string, for fixed end-fixed end supports at x = 0 and x = L, with magnetic damping present 
is given by: 

 
     Thus, magnetic damping of the strings of an electric guitar, like viscous air damping, affects 
the sustain of an electric guitar. The height of the pickups on an electric guitar is usually 
adjustable. For strings that are typically located ~ a few mm above the magnetic poles of the 
guitar pickups, magnetic damping of the string vibrations is not very significant - it is 
comparable to, or less than the damping associated with other physical processes we have 
discussed above. However, if the pickup height is adjusted so as to obtain the maximum possible 
output signal from the pickup(s), by significantly reducing the distance between the guitar strings 
and the magnetic poles of the pickup(s), since the decay time constant associated with magnetic 
damping, Eddy depends on the square of the magnetic field strength at the strings of the guitar, 
B2(z=h), then magnetic damping of the string vibrations in this situation can in fact become the 
dominant string damping mechanism, so much so that the sustain of the electric guitar is 
drastically reduced, especially since the magnetic field strength, B(z) varies as ~ 1/z3 from the 
poles of the permanent magnets of the pickups. 
 

     A magnetic force, FEddy(t) also exists on the vibrating string, which arises due to the 
motionally-induced Eddy current flowing in the vibrating string of an electric guitar in the 
magnetic field of a pickup on the guitar. 
 

     The direction of this force is given by the so-called cross-product of the direction of the 
current, IEddy(t) with the direction of the magnetic field intensity, B at the string. By use of the so-
called “right-hand rule” associated with taking the vector cross product, dFEddy(t) = IEddy(t) dx  
B(x, z=h), where dx is along the axis of the string, in the direction of the flow of current. Thus, 
the direction of the instantaneous magnetic force acting on the string is always opposite to the 
direction of the instantaneous transverse velocity of the string, uy(x, t) - i.e. the magnetic force, 
dFEddy(t)  opposes the transverse motion of the vibrating string (this is simply a manifestation of 
Lenz’s law). 
 

     Note that if the entire length of the vibrating string were immersed in a strong, uniform 
magnetic field, oriented perpendicular to the plane of the vibrating string, the string would 
experience a viscous damping force, analogous to a guitar string vibrating in a viscous fluid, 
such as honey! Thus, when only a small section of the guitar string in the immediate vicinity of 
the guitar pickup(s) is affected by this magnetic damping effect, just this small segment of the 
guitar string experiences this viscous magnetic damping force. 
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     The magnitude of the incremental force contribution, dFEddy(t) acting on an infinitesimal 
length, dx of the string due to the interaction of the induced Eddy current with the magnetic field, 
B(z=h,x) of the magnetic pole of the pickup at the location of the string is given by: 
The total force, FEddy(t) is obtained by summing up/integrating the incremental force 

contributions over the entire length of the vibrating string: 

     Again, because the magnetic field intensity decreases so rapidly in moving away in any 
direction from the immediate vicinity of the pole of the permanent magnet of the pickup, located 
directly underneath the guitar string, the bulk of the contribution of the integrand, 
((t)/Rstring)B(x)sin dx of the above integral occurs in the x-region of the string in the vicinity of 
the pole of the permanent magnet. Since (t)  uy(x, t)B(x)sin D, then Fmagnetic(t)  uy(xpu, 
t)B2(z=h,xpu)sin D/Rstring. Thus, since uy(x, t) = yo sin(kx)cos(t), this time-dependent 
magnetic force acting on the vibrating string depends linearly on the frequency, f of the vibrating 
string and the amplitude, yo of the vibrating string, but depends quadratically on the magnetic 
field intensity at the location of the strings over the guitar pickup(s).  
 

     Even if the strings of an electric guitar are initially plucked horizontally, i.e. in the plane 
parallel to the strings of the guitar, the plane of the transverse displacement, y(x,t) of each of the 
strings will naturally begin to precess in both the horizontal and vertical direction with respect to 
the plane of the strings, with an angular precession frequency, p that is much slower than the 
frequency, f of the fundamental mode of vibration of the string. This precession of the plane of 
polarization of the string arises due to a small non-linear effect associated with the transverse 
vibrations of the string affecting the tension, T in the string. 
 

     This magnetic force, FEddy(t) is maximum (zero) when the plane of the transverse 
displacement, y(x,t) is horizontal (vertical) - i.e. parallel (perpendicular) to the plane of the 
strings, where  = 90o (0o) and sin = 1 (0), respectively. 
 

     There also exists another magnetic force due to the pickup(s) acting on the string(s) of an 
electric guitar. Since the strings of an electric guitar are magnetically permeable, the portion of 
the string(s) in proximity to the magnetic poles of the pickup(s) becomes magnetized, thus the 
string behaves as a linear magnetic quadrupole, as discussed above. Thus, when a (magnetized) 
electric guitar string undergoes transverse vibrations, with transverse amplitude, y(x, t) at a 
height, h above the permanent magnetic pole of a pickup, the separation distance, r between the 
(nearest) permanent magnetic pole of the electric guitar pickup (located directly under the 
equilibrium position of this string) and the string itself varies, as shown in the figure below: 
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     Thus, the separation distance, r between vibrating string and permanent magnetic pole of a 
guitar pickup on an electric guitar varies with time, as 

 

     However, the typical magnitude of transverse displacement, y(x,t) from the equilibrium 
position of the string is |yo| ~ 1-2 mm, whereas the typical diameter of the permanent magnets 
used in electric guitar pickups is D ~ 4-5 mm. Thus, the string vibrates mostly over the pole of 
the pickup, a distance z = h above it, where the magnetic field, B(z=h) from the pole of the 
permanent magnet is fairly constant with transverse amplitude, as long as |y(x,t)| < D.  
 

     The attractive force between the magnetically permeable string and the pole of the permanent 
magnet is given (approximately) by: 

where 2rstringD  area of magnetized string over the magnetic pole of the electric guitar pickup, 
o = magnetic permeability of free space = 4107 Henry/meter. This attractive magnetic force, 
for “horizontal” transverse vibrations (i.e. parallel to the plane of the strings of the electric 
guitar), will be approximately constant with separation distance, r if the equilibrium position of 
each of the strings is well-aligned with the corresponding magnetic pole of the pickup - 
sometimes this is not the case! If there is a misalignment of a string and its corresponding 
magnetic pole on the pickup, then B(r) will not be ~ constant, and hence Fmag(r) will vary with 
the horizontal transverse vibrations of the string. Since the “fringe” portion of the magnetic field 
of a dipole magnet varies as B(r) ~ 1/r3, then the magnetic force in this situation will vary as 
Fmag(r) ~ 1/r6 ! 
 

     When the plane of polarization of the transverse vibration of a string on an electric guitar is 
vertical - i.e. perpendicular to the plane of the strings, then B(r) also varies significantly (since 
the string vibrations are now parallel to the axis of the permanent magnet), and hence so does 
Fmag(r).  
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     Thus, there are time-dependent magnetic forces acting locally on the strings of an electric 
guitar due to the interaction of the magnetic field(s) of the pickups of the electric guitar with the 
magnetized strings of the electric guitar. 
 

     If the pickup height is adjusted such that the strings are very close to the magnetic poles of the 
pickup, the magnetic force(s) acting on the string(s) can become large enough such that they 
noticably interfere with the natural vibration(s) of the strings - causing a noticable shift in the 
pitch (i.e. frequency) of the vibrating string - lowering it, and also altering the harmonic content 
of the string in a time-dependent manner. If the string height is adjusted such that they are too 
close to the pickups of the electric guitar, this can create an unpleasant, time-dependent 
warbling-type tone output from the guitar. 
These warbling-type tones are also known as wolf-tones. Stratocaster guitars, having 3 pickups, 
are particularly susceptible to this problem, if the pickups are adjusted such that they are too 
close to the strings of the guitar, and especially so for notes plated on the G and B strings. 
 

Overall Damping Time Constant 
 

     We have discussed a number of physical processes which cause damping of the vibrations of 
strings on a guitar - viscous air damping of the string, internal damping of the string vibrations, 
damping effects due to build-up of foreign material (“grunge”) on the strings of the guitar, 
magnetic damping effects due to the Eddy currents induced in the metal strings of the electric 
guitar vibrating near the magnetic poles of the guitar pickups, and magnetic damping due to B-H 
hysteresis loss minor cycle-type effects due to the magnetically permeable strings of the electric 
guitar vibrating in the magnetic field(s) of the guitar pickups. 
 

     Because the damping of standing waves on a guitar occurs in the argument of exponential 
terms, e.g. 

 
For n damping time constants, then from the above expression we see that an overall damping 
time constant can be defined as 
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Energy Flow In a Vibrating String 
 

     The following “flow chart” diagram shows what happens to the initial  energy associated with 
a vibrating string on an electric guitar. The initial energy in the string is dissipated by two basic 
categories of processes - mechanical losses and electromagnetic losses, the latter associated with 
the pickup(s) of the guitar. 
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     Ultimately, all of the initial energy associated with the vibrating strings of the guitar winds up 
as heat, somewhere in the universe. Most of this initial energy is dissipated within the guitar 
itself. Only a small fraction of the initial energy of the vibrating string is converted into an 
electrical signal, which is then sent to the guitar amplifier. The voltage amplitude of the signal 
output from an electric guitar is typically on the order of |Vsignal| ~ 100 mV = 0.100 Volts (after 
initial, fast transients have died out). The (peak) power associated with this signal is Psignal = 
|Vsignal|2/Rload, where Rload is the magnitude of the input impedance of a guitar amplifier, typically 
1 Meg-Ohm = 106 Ohms (note that this is also the nominal/industry standard input impedance of 
oscilloscopes). Thus, the peak power associated with a guitar signal is typically Psignal ~ 108 = 10 
 109 = 10 nano-Watts! 
 

Non-Linear Effects in Vibrating Strings 
 

     Up to now, our discussions of various effects on string vibrations have all been associated 
with so-called linear processes. We now wish to discuss some non-linear effects of string 
vibrations. The first non-linear effect is a simple dependence of the natural frequency, fn of the 
mode of vibration, n of the string upon its amplitude of vibration, yn(x,t). 
 

Non-Linear Effect of  String Tension 
     For a string of cross sectional area Astring = r2string, length, L, Young’s modulus, Ystring, and 
material density, string stretched with tension, T between rigid/fixed end supports, located at x = 
0 and x = L, the equation of motion for transverse waves on this string is given by: 
 

where the x-direction is along the axis of the string and the y-direction is transverse to the axis of 
the string, e.g. in the horizontal plane - thus we say the string vibration is polarized in the (x,y) 
plane. The normal modes of vibration of transverse standing waves on the string are given by: 

 
where n = 2fn = knvx = (n/L)(T/)1/2 = (n/L)(T/stringAstring)1/2. 
 

     For a given mode of vibration of the string, n with transverse displacement, yn(x,t) the string 
is displaced from its equilibrium (i.e. zero-amplitude) configuration. The length of the string 
increases slightly, by an amount: 

 
The string tension, T therefore increases by an amount, Tn(t)  YstringAstring(Ln(t)/L): 
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which has both a steady and an oscillating, time-dependent term. If the (overall) transverse 
displacement, y(x,t) involves many modes of vibration, their contributions to the (overall) string 
tension are simply summed, because all cross-terms vanish during the integration in the above 
string-length formula. Then the overall tension increase, T(t) is given by: 

 

The predominant effect of this quasi-steady increase in string tension, T(t)  is to raise the 
vibrational frequencies of all modes of vibration by the same factor - the fractional shift in 
frequency is given by: 

 
However, an additional shift in frequency for each mode arises because of the time-dependence 
of the tension. This causes a further (small) frequency shift for each mode of vibration, 
 

 which destroys the harmoniticity of the modes of vibration - i.e. we no longer have the precise 
relation between the harmonics and the fundamental, fn = nf1, n = 2, 3, 4, .... ! 
 

     Thus, when a string of a guitar is plucked with a large initial transverse amplitude, as the 
string excitation decays with time, there is a slow glide in the pitch/frequency of vibration back 
toward its small-amplitude value. The degree of this pitch-glide, or “twang” depends on the 
square of the amplitude, the length, L tension, T and Young’s modulus of the string. Shorter-
scale guitars with light gauge, low-tension strings, or guitars with de-tuned strings are more 
susceptable to such pitch-glide/twang effects. 
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Non-Linear Effect of  String Tension on a Non-Rigid End Support 
 
     Because of the fact that the string tension, T is not constant with time, if one (or both) of the 
end supports of the strings on a guitar - i.e. the bridge or the nut are not perfectly rigid, then since 
the strings pass over these not-completely rigid end supports at an angle, then the oscillating 
tension T(t) causes a transverse motion of these end supports, vibrating at a frequency, 2fn. This 
can excite the vibrational mode 2n, or in fact interfere (constructively or destructively, depending 
on the exact nature of the motion of the not-completely rigid end support), if the 2n vibrational 
mode is already present. 
  
     Since the angle at which the string passes over the end support varies as fn, then there is also 
the possibility of exciting (and or interfering with) the vibrational mode 3n, with frequency 3fn. 
 

Non-Linear Effect of  String Tension on a Polarization of the String Vibration 
 
     If a vibrational mode, n of a string has initial polarization in the y-direction, vibrating in the 
(x,y) plane at frequency, fn then this creates an oscillating/time-dependent tension, T(t) which has 
frequency, 2fn. The oscillating tension creates a time-dependent force on the vibrating string, but 
in the (x,z) plane, that is proportional to  
 

 
This process is known as parametric amplification, because one of the parameters of the system 
(in this case the tension, T) provides the driving force. As the vibrational mode with z-
polarization grows, it either takes energy from, or feeds back energy to the vibrational mode with 
y-polarization, depending on their relative phases. 
 
     The (initial) rate of rotation/precession of the polarization of the string n (units = 
radians/sec), for a single mode of vibration, n on a string, is given by: 

 
where  is a numerical factor of order of unity. Typically, the precession frequency of a guitar 
string, fn

prec = n /2 ~ 1 Hz, though as can be seen from the above expression, it clearly depends 
on the string material, the string tension, T, the length of the string, L, the initial amplitude(s) in 
the y- and z- directions, and on the mode of vibration, n. Note that as the excitation of the string 
vibration decays with time, the rate of precession of the string also decreases with time. 
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Exercises: 
 
 
References for Waves and Further Reading: 
 
1. George G. Stokes, “On the Effect of Internal Friction of Fluids on the Motion of Pendulums”, 

Trans. Cambridge Phil. Soc. 9, p. 8 (1851). Reprinted in G.G. Stokes, “Mathematical and 
Physical Papers”, Vol. 3, p. 1-140, Cambridge University Press, Cambridge, England (1922). 

 
2. The Physics of Musical Instruments, 2nd Edition, Neville H. Fletcher and Thomas D. 

Rossing, Springer, 1997. 
 
3. The Acoustical Foundations of Music, John Backus, W.W. Norton and Company, 1969. 
 
4. Mathematical Methods of Physics, 2nd Edition, Jon Matthews and R.L. Walker,  

W.A. Benjamin, Inc., 1964. 
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