
 1

Real-Time Time-Domain Pitch Tracking Using Wavelets

 Eric Larson Ross Maddox
 Departments of Mathematics, Physics, Center for Performing Arts Technology
 and Philosophy, Kalamazoo College University of Michigan School of Music
 larson.eric.d@gmail.com rkmaddox@umich.edu

ABSTRACT

A pitch tracker based on the fast lifting wavelet transform (FLWT) is developed
in MATLAB and C++. Emphasis is placed on low latency (~25 ms), high time
resolution, and accuracy. The pitch tracking algorithm implements the FLWT us-
ing the Haar wavelet, a transform which is shown to be mathematically equivalent
to splitting a signal into low-pass and high-pass components and downsampling
(generating approximations and details, respectively). Approximations are used in
combination with intelligent peak detection to determine the pitch of vocal sam-
ples. An averaging scheme is employed to provide enhanced frequency resolution.
This algorithm was tested on natural and synthetic signals—including a female
vocal sample and two sets of generated sinusoidal signals—to determine its per-
formance characteristics. Overall performance exceeded expectations, with most
errors made in voiced/unvoiced detection.

I. Background

Natural sounds are a composition of a
fundamental frequency with a set of har-
monics which occur at near integer
multiples of that fundamental. The fre-
quency that the human ear interprets as the
pitch of a sound is this fundamental fre-
quency, even if it is absent in the sound.
The pitch (or fundamental frequency)1 of
natural sounds is important in many con-
texts. Pitch is largely responsible for
inflections in human speech that carry
conversational cues (e.g. discriminating
between the spoken phrases “you are go-
ing to the store.” and “you are going to the
store?”). These inflections also play a role
in allowing us to consistently identify a
given speaker. In addition to speech, mu-
sical compositions are typically sets of

1 Although there are classical distinctions between
pitch and fundamental frequency, the two will be
considered equivalent for the purposes of this pa-
per.

organized pitches. These pitches, in com-
bination with their timing, enable us to
distinguish Beethoven’s third symphony
from Led Zeppelin’s “Stairway to
Heaven”.

Pitch tracking, then, is useful for musi-
cal analysis as well as for speech analysis.
General pitch tracking is used in speech
recognition and identification schemes as
well as in the automated transcription of
music. Real-time pitch tracking can be
used as an aide for (or judge of) musical
performers, revealing intricacies of per-
formance not immediately revealed by the
ear.

Tracking the pitch of natural sounds—
here the focus is primarily on speech—is
not a trivial task. The topic of pitch track-
ing has been well explored, and there are
several established pitch tracking methods
available today, alongside several uncon-
ventional ones. All pitch trackers have
certain advantages and disadvantages.

 2

Any real-time pitch tracker relies on
processing consecutive small portions of a
signal to produce pitch values. This proc-
ess is called windowing. With a sample
rate of 44100 Hz, it is not uncommon to
use a window length of 1024 or 2048
samples—which correspond to minimum
pitch-determination latencies of about 25
and 50 ms, respectively. Processing time
following the windowing adds to the la-
tency. Although shorter windows can lead
to lower latency and higher time resolu-
tion, they can compromise resolution in
the frequency domain. In the time domain,
shorter windows limit the lowest detect-
able frequency.

Pitch trackers fall into two general
categories: time-domain and frequency-
domain. The former analysis examines the
original signal, often applying filters
and/or convolution to analyze the signal in
its original state, amplitude vs. time. The
latter uses a transform (usually the Fast
Fourier Transform, FFT) to break the sig-
nal down into its frequency components,
yielding information about its amplitude
vs. frequency. It then analyzes this to de-
termine the fundamental frequency. Both
of these have advantages and disadvan-
tages when it comes to frequency
resolution and processing time.

A good summary of established real-
time pitch detection methods is provided
in [2]. However, two of the most popular
methods will be described briefly here.

Autocorrelation is a primary time-
domain method. Autocorrelation selects a
portion of the windowed signal and com-
putes the correlation (sum of the products
divided by the length of the portion, a
measure of similarity between two signals)
between that portion and an equal-length
sliding segment of the windowed signal, at
every point in that window. It then uses
the locations of spikes in the correlation to

determine the period and, hence, the pitch
of the signal.

The primary frequency-domain analy-
sis method is the cepstrum (whose name is
a rearrangement of the word spectrum),
which involves taking the magnitude spec-
trum of the log of the magnitude spectrum
of the windowed signal. The peaks of this
double-FFT can be examined to determine
the frequency of the original signal by re-
lying on the “periodicity” of its harmonics,
which in natural sounds are integer multi-
ples of the fundamental.

All real-time pitch trackers can be
evaluated in terms of four main perform-
ance characteristics. First is computation
time, which should be minimized in order
to minimize latency. The cepstrum per-
forms two FFTs, and autocorrelation
requires many convolutions, which each
consist of many multiplication opera-
tions—which means both methods require
large computation time, and hence larger
latencies. Second is determination of
voiced segments from unvoiced (or
sounded from unsounded for instrumental
samples). A pitch tracker should be able to
distinguish unpitched consonants from
pitched vowels, as well as ignore areas of
silence. Third is pitch accuracy, how
closely the pitch tracker’s estimate
matches the true pitch. A pitch tracker
should have good resolution as well as
avoid making gross errors, such as dou-
blings, halvings, and large spikes, which
can occur due to noise, transients, strong
upper harmonics, and changing overall
amplitude within a window.

The currently established methods of
pitch tracking all have drawbacks in some
of these categories. In this paper, we pre-
sent a pitch tracker with enhanced
performance in all of these respects in an
attempt to offer a viable, fast real-time al-
ternative to other pitch trackers.

 3

II. Method
When visually examining a periodic

signal, it is almost always easy to see the
periodicity. In designing this pitch tracker,
we set out to model the process of visually
determining the period of a windowed sig-
nal using simple logic and computationally
inexpensive transforms to find the extrema
which correctly reveal the periodicity of
waveforms.

A. Fast Lifting Wavelet Transform

The algorithm uses an implementation
of the Fast Lifting Wavelet Transform
(FLWT). A wavelet transform splits a sig-
nal into an approximation and a detail.
Successive transforms can be applied to
the approximations to reduce noise and
reveal underlying periodicity which is
normally more difficult to extract from the
original signal. Any of several different
mother wavelets can be used to perform
the transform. This pitch-tracking algo-
rithm implements a FLWT using the Haar
wavelet. For details on wavelets and the
FLWT in a general setting, refer to [1].
Figure 1 shows the Haar wavelet, the
mother wavelet used to generate the
FLWT of this algorithm.

The FLWT using a Haar wavelet is
mathematically equivalent to running a
low-pass filter and downsampling to pro-
duce the approximation component and
running a high-pass filter and downsam-
pling to produce the detail component. The
equations derived previously by De-
bauchies and Sweldens for the FLWT with
the Haar wavelet are

() (2 1)
() (2)
() () ()

n n
n n
n n n

= +
=
= −

0

0

1 0 0

d x
a x
d d a

 () () ()n n n= +1 0 1a a d , (1)

where x(n) is the original signal, a1(n) the
first approximation, and d1(n) the first de-
tail. With some algebra, it follows that
these are equivalent to

 () (2 1) (2)n n n= + −1d x x

 (2 1) (2)()
2

n nn + +
=1

x xa . (2)

From these equations it is clear that the
approximation component is simply an
application of an averaging filter (a first-
order low-pass) with downsampling (tak-
ing every other result); and the detail
component is an application of a first-
difference filter (a high-pass) with down-
sampling (taking every other result). In
this way, the Haar wavelet FLWT pro-
vides a quick method of splitting a signal
into high-pass and low-pass components.

This splitting scheme can help reveal
underlying periodicity. By discarding the
detail component and performing another
FLWT on the approximation, additional
levels of the wavelet transform are gener-
ated. The repeated (but limited)
application of the FLWT in this manner
ideally yields a pitch-tracker that is robust
to noise and able to distinguish pitched
sounds from unvoiced consonants. Using

0 1 2
-1

0

1

Haar Wavelet

Samples

A
m

pl
itu

de

FIG. 1. The Haar wavelet, which serves as the
basis of the FLWT (fast lifting wavelet transform)
used in this algorithm.

 4

this low-pass technique allows the com-
puter to “see” the underlying periodic
waveform that is already apparent to the
human observer. Since the desired fre-
quency range of operation is from about

80 Hz to 3000 Hz, the use of several re-
peated low-pass operations and
downsamplings does not compromise the
frequency components that allow pitch
determination. Since at least two wavelet
approximations must be performed, there
is an inherent ideal frequency ceiling of
Nyquist/4, which for CD sample rate is
about 5500 Hz. See Figure 2 for an image
of the wavelet transformation, containing
an original signal and the first, second, and
third wavelet approximations. Note that
with each successive wavelet transform,
the number of samples in the approxima-
tion is halved as the signal is split into
approximation and detail; this provides a
practical operational limit on the number
of wavelet transform levels that can be run
on any given window of a signal.

B. Algorithm

The steps of the pitch tracking algo-
rithm for each current window of the
signal are as follows:

1) Perform the FLWT, discard the detail

component.
2) Find the first local maxi-

mum/minimum after each zero-
crossing of the current approximation.

3) Determine the mode distance between
the maxima/minima.

4) Check to see if the mode distance is
equivalent to that of the previous level.
If so take that to be the period and
move to the next window; if not, go to
the next level (not to exceed a speci-
fied wavelet transform level limit) and
return to step 1; if the level limit is ex-
ceeded, assume that the signal is
unpitched and move to the next win-
dow.

One of the first uses of the wavelet trans-
form in pitch detection came from
Kadambe in [4], and proved successful. In

200 400 600 800 1000

-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de

Original Signal

100 200 300 400 500

-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de

Approximation Level 1

50 100 150 200 250
-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de

Approximation Level 2

20 40 60 80 100 120
-0.4

-0.2

0

0.2

0.4

Samples

A
m

pl
itu

de

Approximation Level 3

FIG. 2. Amplitude vs. Time for an original signal
(top) and the first/second/third wavelet approxima-
tions (second, third, and fourth from the top). Note
the reduction of noise and simplification of the
signal with each successive approximation.

 5

the same vein, Erçelebi in [3] used the
FLWT to speed up the implementation.
Our work is similar to his in many re-
spects. We build on his work, employing
several improvements: 1) a more robust
peak-detection algorithm (accompanied by
a more explicit description of method); 2)
a different wavelet level decision scheme;
3) a transient detector that marks the win-
dowed signal as unpitched if the RMS of
the first third is more than four times that
of the last third (or vice versa); as well as
4) a mode-averaging method that increases
frequency resolution, especially in the
high frequencies.

C. Peak Detection/Differences

The maximum-finding process2 in-
volves several steps. The average
amplitude is calculated and subtracted
from every element of the windowed sig-
nal, removing the DC component.3 A
lower threshold for maxima is set which is
a percentage of the window global maxi-
mum. Next, the location of the first local
maximum (following the first derivative
test—a change from positive to negative
slope) between every set of zero crossings
with an amplitude greater than the thresh-
old is recorded as a location of a
maximum. This procedure sets an upper
limit on the number of maxima equal to
one fewer than the number of zero cross-
ings, providing an upper limit on the
frequency. Also, no maximum index mi
can be recorded if it is within some mini-
mum distance δ of the previous maximum
index mi-1. The minimum distance δ is a
controllable parameter related to the speci-
fied maximum returnable frequency F and

2 The minimum finding process is equivalent to the
maximum finding process, with appropriate sign
and inequality adjustments
3 In practice, the value is not truly subtracted from
every element, but the method implemented gener-
ates equivalent results with less computation.

the current wavelet level i in the following
way (where Fs is the sample rate):

 smax , 1
2i

F
F

δ ⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. (3)

Next, the distances between these

peaks are calculated. For each maximum
index mi, the distances between mi and
subsequent maximum indices mi+1, mi+2,
mi+3, …, mi+N are calculated and stored
(the number N of subsequent peaks taken
into consideration is a controllable pa-
rameter). Taking several distance levels
helps to ensure that a waveform which
yields more than one maximum value per
period is still analyzed correctly. While
this may appear prima facie to also induce
halvings or thirdings of the frequency, the
finitude of the window size ensures that
there are more of the correct distance than
of its integer multiples resulting from tak-
ing several levels of differences.

These differences calculated using the
maxima are combined with the differences
calculated using the minima to determine a
mode distance. For each distance in set,
the number of distances close to (i.e.
within a specified tolerance δ of) it are
counted; the distance with the most other
distances close to it in value is taken to be
the center mode. In the case of a tie be-
tween two such modes, the larger mode is
taken if it is twice as long as the smaller
mode (biasing toward frequency halvings).
The mode from the previous window pitch
detection is also passed to the function,
assisting in the case of a near-tie. If the
number of occurrences of a mode candi-
date is within one of that of the actual
mode, it biases mode selection toward the
previous window’s period.

D. Mode Averaging

 6

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400
Measured vs. Actual Frequency

M
ea

su
re

d
Fr

eq
ue

nc
y

(H
z)

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400
Measured vs. Actual Frequency (no averaging)

M
ea

su
re

d
Fr

eq
ue

nc
y

(H
z)

Actual Frequency (Hz)

FIG. 3. The response of the pitch tracker to a 1-
Hz-stepped sinusoidal signal from 100 to 1500 Hz.
Averaging method (upper plot) improves accuracy
over the non-averaging method (bottom).

Once this center mode is selected, an
averaging scheme is employed to increase
frequency resolution. The mean of the dis-
tances within δ of the center mode is taken
to be the period of the signal (with appro-
priate scaling by a power of two to
compensate for the downsampling of the
FLWT). In the low frequencies, this aver-
aging occurs over only a limited number
of periods and has a small effect on the
increased resolution; in the high frequen-
cies, where a simple integer mode would
yield a high pitch detection error (due to
discretization and sample rate limitations),
the averaging function enhances the per-
formance by providing a more accurate
divisor when calculating frequency from
period. See Figure 3 for an illustration of
this increase in frequency resolution in a
four-octave test from 90 to 1440 Hz.

This algorithm has been implemented
in MATLAB and C++; see appendix A for
the MATLAB implementation.

III. Results and Discussion

The controllable parameters of the al-
gorithm are the maximum frequency F
from which δ is derived; the number of
subsequent peaks N to consider when cal-
culating distances; the global threshold
percentage M of the window maximum
that a local max must exceed to be
counted; and L, the maximum number of
wavelet transforms to perform before a
window is deemed pitchless. There was
much experimentation with all of these
numbers, and pitch detection performance
was highest using the values listed in Ta-
ble I.

The criteria used to evaluate the pitch
tracker are computation time (latency),
voiced/unvoiced determination, and over-
all pitch detection accuracy. Each of these
performance characteristics is discussed
below. Performance was tested using re-
corded or synthesized samples, rather than
live input to allow for greater control and
repeatability of tests. In general, the pitch
tracker was calibrated to function over a
frequency range of about 100-1500 Hz, so
most tests were run on samples from 90-
1440 Hz to allow test over a large range
and easy octave-based bracketing.

A. Computation Time

The latency is comprised of two parts:
the buffering period, in which the win-

TABLE I. Pitch Tracker Parameters
Maximum
Frequency

F

Difference
Levels

N

Maxima
Threshold

M

FLWT
Levels

L
3000 Hz 3 0.75 6

Table I. List of algorithm parameters experimentally
determined to yield best performance.

 7

0 5 10 15 20 25
0

100

200

300

400

Time (s)

Fr
eq

ue
nc

y
(H

z)

Frequency vs. Time

FIG. 4. Frequency vs. Time for a 26-second sample of female vocals. One voiced-to-unvoiced and three
unvoiced-to-voiced errors occurred (~0.4 % error rate). Good time and frequency resolution of the pitch
tracker reveal vibrato, toward the end of sustained notes, and vocal trills.

dowed signal is acquired, and the pitch
computation on that window. For the tests
done on this pitch tracker, the sample rate
was 44100 Hz and the window size was
1024 samples, yielding a buffering time of
23 ms. Using a 3 GHz Pentium 4 Proces-
sor, the computation time for each window
in MATLAB was 4 ms, yielding a total la-
tency of 27 ms. The C++ implementation
has an even shorter computation time, with
overall latency even closer to the 23 ms
buffering time. This implies that if the
minimum frequency present in the signal
were closer to 200 Hz, the window size
could be decreased to 512 samples, reduc-
ing both window computation time and
buffering time, nearly cutting the latency
in half.

B. Voiced/Unvoiced Detection

The voiced/unvoiced detection in the
pitch tracker was its weakest performance
category. There were specific windows
which the pitch tracker failed to recognize
as unvoiced, yielding a spike in the fre-
quency where there should have been a
zero to denote unvoiced. See Figure 4 for
an illustration of this on a 26-second fe-
male vocal recording. In over 1000 sample
windows, three unvoiced-to-voiced errors
and one voiced-to-unvoiced error oc-

curred, yielding an error rate of less than
0.4%. Although this is not an exhaustive
analysis, it is representative of the algo-
rithm’s general behavior; voiced/unvoiced
error rates among other test samples were
less than 1%.

C. Pitch Detection Accuracy

The first pitch detection accuracy
measure was an error-per-octave test on
sinusoidal waveforms of constant fre-
quency within a 1024-sample window.
The accuracy of the pitch tracker was very
good throughout the tested frequency
range of 90 – 1440 Hz, in increments of 1
Hz each interval. See Figure 5 values at
each octave of the RMS error in Hz, RMS
error in cents (defined as hundredths of a
musical semitone), and mean error in Hz.
The maximum RMS error was about 0.6
Hz in the 720-1440 Hz range. Mean errors
were negligibly centered about zero. This
test indicates extremely good performance
on sinusoidal waveforms, with the RMS
error increasing approximately exponen-
tially with frequency, doubling with every
octave band. This leads to a nearly uni-
formly small (1 ± 0.5) RMS error in cents
across the octave bands tested. This indi-
cates that the pitch tracker has near-
uniform accuracy in terms of musical in-

 8

90-180 180-360 360-720 720-1440
0

0.2

0.4

0.6

0.8
RMS Error (Hz) vs. Octave

R
M

S
 E

rro
r (

H
z)

90-180 180-360 360-720 720-1440
0

1

2
RMS Error (cents) vs. Octave

R
M

S
 E

rro
r (

ce
nt

s)

90-180 180-360 360-720 720-1440
0

2

4

6
Maximum Error Magnitude (cents) vs. Octave

E
rro

r (
ce

nt
s)

90-180 180-360 360-720 720-1440
-0.01

0

0.01

0.02
Mean Error (Hz) vs. Octave

M
ea

n
E

rro
r (

H
z)

Frequency Range (Hz)

FIG. 5. RMS Error (Hz), RMS Error (cents),
Maximum Error Magnitude (cents), and Mean
Error (Hz) vs. Frequency Range (Hz) over four
octaves. Mean error across all octaves is about 0 ±
0.01 Hz. RMS error increases exponentially, dou-
bling with every octave, achieving a maximum
value (worst performance) of about 0.6 Hz in the
720-1440 octave.

tervals across its frequency range. Addi-
tionally, this accuracy is below the just
noticeable difference (JND) of pitches.
According to [5], although the JND varies
from person to person and across frequen-
cies, a good estimate is that the JND for
pitch is about 5 cents. Since the maximum
error across all frequency bands was about
5 cents, the algorithm provides accuracy

within the JND an overwhelming propor-
tion of the time.

A second, qualitative analysis of accu-
racy was performed on a 26-second female
vocal sample. See Figure 4 for the pitch
tracker’s analysis of this sample. This
analysis reveals the details of the singer’s
vibrato at the end of words, and trills. No
doublings or halvings occurred during the
analysis. Although rare, other tested sam-
ples did have halvings, at a rate less than
one half of one percent. No doublings
were found in any of the analyses of test
samples.

The third test was a missing-
fundamental test. Signals were synthesized
using upper harmonics (with at least one
odd harmonic), omitting the fundamental,
for fundamental frequencies spanning 90 –
720 Hz by half-octaves. For each fre-
quency, nine 100-window samples were
constructed by adding the adjacent har-
monic pairs (2nd and 3rd, then 3rd and 4th,
and so on up to the 10th and 11th). Each of
these nine samples was analyzed, and Ta-
ble II shows the threshold of errors for
each missing fundamental F0.

With the exception of the 90 Hz case,
the pitch tracker accurately estimated the
pitch of the missing fundamental up to the
point at which the higher of the two
summed harmonics was above the maxi-

TABLE II. Missing Fundamental First Failures

F0 90 127 180 255 360 509 720

Fn 720 1018 1620 1527 1440 1527 1440

n 8 8 9 6 4 3 2

Table II: Missing Fundamental test first failures.
For each fundamental frequency F0 (in Hz), the
lowest frequency of the first adjacent upper har-
monic pair to fail, Fn (in Hz), is listed, as well as its
harmonic number n. Note that the missing funda-
mental detection fails (except for the 90 Hz case)
when at least one of Fn and Fn+1 is above the fre-
quency range of the pitch tracker.

 9

mum detectable frequency. So long as
both harmonics were below around 2500
Hz, the pitch tracker detected the missing
fundamental. In the 90 Hz case, the pitch
tracker began failing when the upper har-
monics were 720 and 810 Hz; the reason
for this failure was not determined. How-
ever, a signal containing only the 8th and
9th harmonics is unlikely to be encountered
in practical use. Overall, the missing fun-
damental performance was very good,
limited mainly by the highest detectable
frequency of the pitch tracker.

D. Discussion

This pitch detection method has very
good resolution in the low frequencies
(due to its use of time-domain methods)
and in the high-frequencies (due to the av-
eraging method). This resolution enables
accurate pitch detection as outlined above.
The use of a 1024-sample analysis win-
dow with sounds sampled at 44100 Hz
yields very good time resolution as well.

When dealing with vocal samples, this
algorithm is relatively immune to pitch
doublings and halvings, which are a com-
mon problem for pitch trackers. For other
types of sound, such as distorted electric
guitar, limited testing revealed doublings
due to strong upper harmonics. Halvings
were rare in all samples tested, and did not
appear systematically.

An absolute threshold could be intro-
duced to reduce the voiced/unvoiced errors
seen with this algorithm. A threshold re-
duces spikes in unvoiced sections, but also
trims very low-level voiced sections,
which was considered a poor tradeoff. If a
high enough input signal level could be
guaranteed, an absolute threshold could be
a valuable and computationally cheap im-
provement for real-time applications. For
non real-time applications, a threshold
based on the global maximum/minimum

value proves useful, and could be easily
added to the existing code.

In non real-time applications, a
smoothing function could also be imple-
mented. Most pitch trackers that deal with
signals in non real-time implement some
form of a smoothing algorithm to deal
with voiced/unvoiced errors and pitch dou-
blings and halvings. This algorithm would
benefit similarly from such a method, but
would lose its real-time functionality.

The pitch tracker compared favorably
to the established methods of cepstrum
and autocorrelation in all three categories.
Computationally this algorithm was
cheaper, voiced/unvoiced errors were
similarly frequent across methods, and
pitch accuracy was as good or better.

IV. Conclusions

In this paper a real-time pitch tracking
algorithm was presented. Low measure-
ment error (high pitch detection accuracy)
expectations were exceeded by the algo-
rithm due to its good frequency resolution
in both low and high frequencies. Short
analysis window length led to good time
resolution. Error rates (voiced/unvoiced
and frequency halvings) were low, but fur-
ther improvements could be made.
Computational costs were even lower than
expected, yielding very low latency peri-
ods. Compared to established methods,
this algorithm compares favorably, and
could be useful in real-time applications
where latency and pitch detection accuracy
are emphasized.

V. Acknowledgments

We would like to thank Prof. S. Errede
for the opportunity work for him this
summer; J. Boparai for his help in the lab;
M. Winkler for working with us and help-
ing us in the lab; J. Beauchamp and M.
Bay for advice on pitch tracking; The
Physics department at University of Illi-

 10

nois at Urbana Champaign for hosting the
REU program; and the National Science
Foundation for support via grant PHY-
0243675.

VI. References
[1] Daubechies, Ingrid and Wim

Sweldens. “Factoring Wavelet Trans-
forms into Lifting Steps.” J. Fourier
Anal. Appl, 1998.

[2] de la Cuadra, Patricio et al. “Efficient

Pitch Detection Techniques for Inter-
active Music.” Proceedings of the
2001 International Computer Music
…, 2001.

[3] Erçelebi, Ergun. “Second generation

wavelet transform-based pitch period
estimation and voiced/unvoiced deci-
sion for speech signals.” Applied
Acoustics 64 (2003) 25–41.

[4] Kadambe S, Faye Boudreaux-Bartels

G. Application of the wavelets trans-
form for pitch detection of speech
signals. IEEE Trans on Information
Theory 1992;38(2):917–24.

[5] Rossing, Thomas D., The Science of

Sound 2nd Ed, Addison-Wesley 1990.

 11

Appendix A: wavePitch.m

function freq = wavePitch(data,fs,oldFreq)
%
% WAVEPITCH Determine the pitch of a given short portion of data.
%
% WAVEPITCH(data, fs, oldFreq) data is a [1 x samples] array. Optional
% inputs are fs (the sample rate of the signal, defaulting to 44100 if
% unspecified), and oldFreq (the frequency from the previous window).
%
% N.B. Data input should be at least 256 samples long. 1024 is recommended.
% It also must be a multiple of 64.
%
% Copyright 2005 Ross Maddox (University of Michigan)
% and Eric Larson (Kalamazoo College)

if (nargin < 1) return; if (nargin < 2) fs = 44100; if (nargin < 3) oldFreq = 0; end

oldMode = 0;
if(oldFreq)
 oldMode = fs/oldFreq;
end

dataLen = length(data);
freq = 0; % The freq to return
lev = 6; % Six levels of analysis
globalMaxThresh = .75; % Thresholding of maximum values to consider
maxFreq = 3000; % Yields minimum distance to consider valid
diffLevs = 3; % Number of differences to go through (3 is diff @ third neighbor)

maxCount(1) = 0;
minCount(1) = 0;

a(1,:) = data;
aver = mean(a(1,:));
globalMax = max(a(1,:));
globalMin = min(a(1,:));
maxThresh = globalMaxThresh*(globalMax-aver) + aver; % Adjust for DC Offset
minThresh = globalMaxThresh*(globalMin-aver) + aver; % Adjust for DC Offset

%% Begin pitch detection %%

for (i = 2:lev)
 newWidth = dataLen/2^(i - 1);

 %% Perform the FLWT %%

 j = 1:newWidth;
 d(i,j) = a(i-1,2*j) - a(i-1,2*j-1);
 a(i,j) = a(i-1,2*j-1) + d(i,j)/2;

 %% Find the maxes of the current approximation %%

 minDist = max(floor(fs/maxFreq/2^(i-1)),1);
 maxCount(i) = 0;
 minCount(i) = 0;

 climber = 0; % 1 if pos, -1 if neg
 if (a(i,2) - a(i,1) > 0)
 climber = 1;
 else
 climber = -1;
 end

 canExt = 1; % Tracks whether an extreme can be found (based on zero crossings)
 tooClose = 0; % Tracks how many more samples must be moved before another extreme

 for (j = 2:newWidth-1)
 test = a(i,j) - a(i,j - 1);

 if (climber >= 0 && test < 0)
 if(a(i,j - 1) >= maxThresh && canExt && ~tooClose)
 maxCount(i) = maxCount(i) + 1;
 maxIndices(i,maxCount(i)) = j - 1;
 canExt = 0;
 tooClose = minDist;
 end
 climber = -1;

 12

 elseif (climber <= 0 && test > 0)
 if(a(i,j - 1) <= minThresh && canExt && ~tooClose)
 minCount(i) = minCount(i) + 1;
 minIndices(i,minCount(i)) = j - 1;
 canExt = 0;
 tooClose = minDist;
 end
 climber = 1;
 end

 if (a(i,j) <= aver && a(i,j - 1) > aver) || (a(i,j) >= aver && a(i,j - 1) < aver)
 canExt = 1;
 end

 if(tooClose)
 tooClose = tooClose - 1;
 end
 end

 %% Calculate the mode distance between peaks at each level %%

 if (maxCount(i) >= 2 && minCount(i) >=2)

 % Calculate the differences at diffLevs distances

 differs = [];
 for (j = 1:diffLevs) % Interval of differences (neighbor, next-neighbor...)
 k = 1:maxCount(i) - j; % Starting point of each run
 differs = [differs abs(maxIndices(i,k+j) - maxIndices(i,k))];
 k = 1:minCount(i) - j; % Starting point of each run
 differs = [differs abs(minIndices(i,k+j) - minIndices(i,k))];
 end

 dCount = length(differs);

 % Find the center mode of the differences

 numer = 1; % Require at least two agreeing differs to yield a mode
 mode(i) = 0; % If none is found, leave as zero

 for (j = 1:dCount)

 % Find the # of times that distance j is within minDist samples of another distance
 numerJ = length(find(abs(differs(1:dCount) - differs(j)) <= minDist));

 % If there are more, set the new standard
 if (numerJ >= numer && numerJ > floor(newWidth/differs(j))/4)
 if (numerJ == numer)
 if oldMode && abs(differs(j) - oldMode/(2^(i-1))) < minDist
 mode(i) = differs(j);
 elseif ~oldMode && (differs(j) > 1.95*mode(i) && differs(j) < 2.05*mode(i))
 mode(i) = differs(j);
 end
 else
 numer = numerJ;
 mode(i) = differs(j);
 end
 elseif numerJ == numer-1 && oldMode && abs(differs(j)-oldMode/(2^(i-1))) < minDist
 mode(i) = differs(j);
 end
 end

 %% Set the mode via averaging %%

 if (mode(i))
 mode(i) = mean(differs(find(abs(mode(i) - differs(1:dCount)) <= minDist)));
 end

 %% Determine if the modes are shared %%

 if(mode(i-1) && maxCount(i - 1) >= 2 && minCount(i - 1) >= 2)

 % If the modes are within a sample of one another, return the calculated frequency
 if (abs(mode(i-1) - 2*mode(i)) <= minDist)
 freq = fs/mode(i-1)/2^(i-2);
 return;
 end
 end
 end
end

