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ABSTRACT 
 

A pitch tracker based on the fast lifting wavelet transform (FLWT) is developed 
in MATLAB and C++. Emphasis is placed on low latency (~25 ms), high time 
resolution, and accuracy. The pitch tracking algorithm implements the FLWT us-
ing the Haar wavelet, a transform which is shown to be mathematically equivalent 
to splitting a signal into low-pass and high-pass components and downsampling 
(generating approximations and details, respectively). Approximations are used in 
combination with intelligent peak detection to determine the pitch of vocal sam-
ples. An averaging scheme is employed to provide enhanced frequency resolution. 
This algorithm was tested on natural and synthetic signals—including a female 
vocal sample and two sets of generated sinusoidal signals—to determine its per-
formance characteristics. Overall performance exceeded expectations, with most 
errors made in voiced/unvoiced detection. 

 
I. Background 

Natural sounds are a composition of a 
fundamental frequency with a set of har-
monics which occur at near integer 
multiples of that fundamental. The fre-
quency that the human ear interprets as the 
pitch of a sound is this fundamental fre-
quency, even if it is absent in the sound. 
The pitch (or fundamental frequency)1 of 
natural sounds is important in many con-
texts. Pitch is largely responsible for 
inflections in human speech that carry 
conversational cues (e.g. discriminating 
between the spoken phrases “you are go-
ing to the store.” and “you are going to the 
store?”). These inflections also play a role 
in allowing us to consistently identify a 
given speaker. In addition to speech, mu-
sical compositions are typically sets of 

                                                 
1 Although there are classical distinctions between 
pitch and fundamental frequency, the two will be 
considered equivalent for the purposes of this pa-
per. 

organized pitches. These pitches, in com-
bination with their timing, enable us to 
distinguish Beethoven’s third symphony 
from Led Zeppelin’s “Stairway to 
Heaven”. 

Pitch tracking, then, is useful for musi-
cal analysis as well as for speech analysis. 
General pitch tracking is used in speech 
recognition and identification schemes as 
well as in the automated transcription of 
music. Real-time pitch tracking can be 
used as an aide for (or judge of) musical 
performers, revealing intricacies of per-
formance not immediately revealed by the 
ear. 

Tracking the pitch of natural sounds—
here the focus is primarily on speech—is 
not a trivial task. The topic of pitch track-
ing has been well explored, and there are 
several established pitch tracking methods 
available today, alongside several uncon-
ventional ones. All pitch trackers have 
certain advantages and disadvantages. 
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Any real-time pitch tracker relies on 
processing consecutive small portions of a 
signal to produce pitch values. This proc-
ess is called windowing. With a sample 
rate of 44100 Hz, it is not uncommon to 
use a window length of 1024 or 2048 
samples—which correspond to minimum 
pitch-determination latencies of about 25 
and 50 ms, respectively. Processing time 
following the windowing adds to the la-
tency. Although shorter windows can lead 
to lower latency and higher time resolu-
tion, they can compromise resolution in 
the frequency domain. In the time domain, 
shorter windows limit the lowest detect-
able frequency. 

Pitch trackers fall into two general 
categories: time-domain and frequency-
domain. The former analysis examines the 
original signal, often applying filters 
and/or convolution to analyze the signal in 
its original state, amplitude vs. time. The 
latter uses a transform (usually the Fast 
Fourier Transform, FFT) to break the sig-
nal down into its frequency components, 
yielding information about its amplitude 
vs. frequency. It then analyzes this to de-
termine the fundamental frequency. Both 
of these have advantages and disadvan-
tages when it comes to frequency 
resolution and processing time. 

A good summary of established real-
time pitch detection methods is provided 
in [2]. However, two of the most popular 
methods will be described briefly here. 

Autocorrelation is a primary time-
domain method. Autocorrelation selects a 
portion of the windowed signal and com-
putes the correlation (sum of the products 
divided by the length of the portion, a 
measure of similarity between two signals) 
between that portion and an equal-length 
sliding segment of the windowed signal, at 
every point in that window. It then uses 
the locations of spikes in the correlation to 

determine the period and, hence, the pitch 
of the signal. 

The primary frequency-domain analy-
sis method is the cepstrum (whose name is 
a rearrangement of the word spectrum), 
which involves taking the magnitude spec-
trum of the log of the magnitude spectrum 
of the windowed signal. The peaks of this 
double-FFT can be examined to determine 
the frequency of the original signal by re-
lying on the “periodicity” of its harmonics, 
which in natural sounds are integer multi-
ples of the fundamental. 

All real-time pitch trackers can be 
evaluated in terms of four main perform-
ance characteristics. First is computation 
time, which should be minimized in order 
to minimize latency. The cepstrum per-
forms two FFTs, and autocorrelation 
requires many convolutions, which each 
consist of many multiplication opera-
tions—which means both methods require 
large computation time, and hence larger 
latencies. Second is determination of 
voiced segments from unvoiced (or 
sounded from unsounded for instrumental 
samples). A pitch tracker should be able to 
distinguish unpitched consonants from 
pitched vowels, as well as ignore areas of 
silence. Third is pitch accuracy, how 
closely the pitch tracker’s estimate 
matches the true pitch. A pitch tracker 
should have good resolution as well as 
avoid making gross errors, such as dou-
blings, halvings, and large spikes, which 
can occur due to noise, transients, strong 
upper harmonics, and changing overall 
amplitude within a window. 

The currently established methods of 
pitch tracking all have drawbacks in some 
of these categories. In this paper, we pre-
sent a pitch tracker with enhanced 
performance in all of these respects in an 
attempt to offer a viable, fast real-time al-
ternative to other pitch trackers. 
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II. Method 
When visually examining a periodic 

signal, it is almost always easy to see the 
periodicity. In designing this pitch tracker, 
we set out to model the process of visually 
determining the period of a windowed sig-
nal using simple logic and computationally 
inexpensive transforms to find the extrema 
which correctly reveal the periodicity of 
waveforms.  

 
A. Fast Lifting Wavelet Transform 

The algorithm uses an implementation 
of the Fast Lifting Wavelet Transform 
(FLWT). A wavelet transform splits a sig-
nal into an approximation and a detail. 
Successive transforms can be applied to 
the approximations to reduce noise and 
reveal underlying periodicity which is 
normally more difficult to extract from the 
original signal. Any of several different 
mother wavelets can be used to perform 
the transform. This pitch-tracking algo-
rithm implements a FLWT using the Haar 
wavelet. For details on wavelets and the 
FLWT in a general setting, refer to [1]. 
Figure 1 shows the Haar wavelet, the 
mother wavelet used to generate the 
FLWT of this algorithm. 

The FLWT using a Haar wavelet is 
mathematically equivalent to running a 
low-pass filter and downsampling to pro-
duce the approximation component and 
running a high-pass filter and downsam-
pling to produce the detail component. The 
equations derived previously by De-
bauchies and Sweldens for the FLWT with 
the Haar wavelet are 
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where x(n) is the original signal, a1(n) the 
first approximation, and d1(n) the first de-
tail. With some algebra, it follows that 
these are equivalent to 
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From these equations it is clear that the 
approximation component is simply an 
application of an averaging filter (a first-
order low-pass) with downsampling (tak-
ing every other result); and the detail 
component is an application of a first-
difference filter (a high-pass) with down-
sampling (taking every other result). In 
this way, the Haar wavelet FLWT pro-
vides a quick method of splitting a signal 
into high-pass and low-pass components. 

This splitting scheme can help reveal 
underlying periodicity. By discarding the 
detail component and performing another 
FLWT on the approximation, additional 
levels of the wavelet transform are gener-
ated. The repeated (but limited) 
application of the FLWT in this manner 
ideally yields a pitch-tracker that is robust 
to noise and able to distinguish pitched 
sounds from unvoiced consonants. Using 
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FIG. 1.  The Haar wavelet, which serves as the
basis of the FLWT (fast lifting wavelet transform) 
used in this algorithm. 



 4

this low-pass technique allows the com-
puter to “see” the underlying periodic 
waveform that is already apparent to the 
human observer. Since the desired fre-
quency range of operation is from about 

80 Hz to 3000 Hz, the use of several re-
peated low-pass operations and 
downsamplings does not compromise the 
frequency components that allow pitch 
determination. Since at least two wavelet 
approximations must be performed, there 
is an inherent ideal frequency ceiling of  
Nyquist/4, which for CD sample rate is 
about 5500 Hz. See Figure 2 for an image 
of the wavelet transformation, containing 
an original signal and the first, second, and 
third wavelet approximations. Note that 
with each successive wavelet transform, 
the number of samples in the approxima-
tion is halved as the signal is split into 
approximation and detail; this provides a 
practical operational limit on the number 
of wavelet transform levels that can be run 
on any given window of a signal. 

 
B. Algorithm 

The steps of the pitch tracking algo-
rithm for each current window of the 
signal are as follows: 

 
1) Perform the FLWT, discard the detail 

component. 
2) Find the first local maxi-

mum/minimum after each zero-
crossing of the current approximation. 

3) Determine the mode distance between 
the maxima/minima. 

4) Check to see if the mode distance is 
equivalent to that of the previous level. 
If so take that to be the period and 
move to the next window; if not, go to 
the next level (not to exceed a speci-
fied wavelet transform level limit) and 
return to step 1; if the level limit is ex-
ceeded, assume that the signal is 
unpitched and move to the next win-
dow. 

 
One of the first uses of the wavelet trans-
form in pitch detection came from 
Kadambe in [4], and proved successful. In 
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FIG. 2.  Amplitude vs. Time for an original signal
(top) and the first/second/third wavelet approxima-
tions (second, third, and fourth from the top). Note 
the reduction of noise and simplification of the
signal with each successive approximation. 
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the same vein, Erçelebi in [3] used the 
FLWT to speed up the implementation. 
Our work is similar to his in many re-
spects. We build on his work, employing 
several improvements: 1) a more robust 
peak-detection algorithm (accompanied by 
a more explicit description of method); 2) 
a different wavelet level decision scheme; 
3) a transient detector that marks the win-
dowed signal as unpitched if the RMS of 
the first third is more than four times that 
of the last third (or vice versa); as well as 
4) a mode-averaging method that increases 
frequency resolution, especially in the 
high frequencies. 
 
C. Peak Detection/Differences 

The maximum-finding process2 in-
volves several steps. The average 
amplitude is calculated and subtracted 
from every element of the windowed sig-
nal, removing the DC component.3 A 
lower threshold for maxima is set which is 
a percentage of the window global maxi-
mum. Next, the location of the first local 
maximum (following the first derivative 
test—a change from positive to negative 
slope) between every set of zero crossings 
with an amplitude greater than the thresh-
old is recorded as a location of a 
maximum. This procedure sets an upper 
limit on the number of maxima equal to 
one fewer than the number of zero cross-
ings, providing an upper limit on the 
frequency. Also, no maximum index mi 
can be recorded if it is within some mini-
mum distance δ of the previous maximum 
index mi-1. The minimum distance δ is a 
controllable parameter related to the speci-
fied maximum returnable frequency F and 

                                                 
2 The minimum finding process is equivalent to the 
maximum finding process, with appropriate sign 
and inequality adjustments 
3 In practice, the value is not truly subtracted from 
every element, but the method implemented gener-
ates equivalent results with less computation. 

the current wavelet level i in the following 
way (where Fs is the sample rate): 

 

 smax , 1
2i

F
F

δ ⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. (3) 

 
Next, the distances between these 

peaks are calculated. For each maximum 
index mi, the distances between mi and 
subsequent maximum indices mi+1, mi+2, 
mi+3, …, mi+N are calculated and stored 
(the number N of subsequent peaks taken 
into consideration is a controllable pa-
rameter). Taking several distance levels 
helps to ensure that a waveform which 
yields more than one maximum value per 
period is still analyzed correctly. While 
this may appear prima facie to also induce 
halvings or thirdings of the frequency, the 
finitude of the window size ensures that 
there are more of the correct distance than 
of its integer multiples resulting from tak-
ing several levels of differences. 

These differences calculated using the 
maxima are combined with the differences 
calculated using the minima to determine a 
mode distance. For each distance in set, 
the number of distances close to (i.e. 
within a specified tolerance δ of) it are 
counted; the distance with the most other 
distances close to it in value is taken to be 
the center mode. In the case of a tie be-
tween two such modes, the larger mode is 
taken if it is twice as long as the smaller 
mode (biasing toward frequency halvings). 
The mode from the previous window pitch 
detection is also passed to the function, 
assisting in the case of a near-tie. If the 
number of occurrences of a mode candi-
date is within one of that of the actual 
mode, it biases mode selection toward the 
previous window’s period. 

 
D. Mode Averaging 
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FIG. 3.  The response of the pitch tracker to a 1-
Hz-stepped sinusoidal signal from 100 to 1500 Hz.
Averaging method (upper plot) improves accuracy 
over the non-averaging method (bottom). 

Once this center mode is selected, an 
averaging scheme is employed to increase 
frequency resolution. The mean of the dis-
tances within δ of the center mode is taken 
to be the period of the signal (with appro-
priate scaling by a power of two to 
compensate for the downsampling of the 
FLWT). In the low frequencies, this aver-
aging occurs over only a limited number 
of periods and has a small effect on the 
increased resolution; in the high frequen-
cies, where a simple integer mode would 
yield a high pitch detection error (due to 
discretization and sample rate limitations), 
the averaging function enhances the per-
formance by providing a more accurate 
divisor when calculating frequency from 
period. See Figure 3 for an illustration of 
this increase in frequency resolution in a 
four-octave test from 90 to 1440 Hz. 

This algorithm has been implemented 
in MATLAB and C++; see appendix A for 
the MATLAB implementation. 

 
III. Results and Discussion 

The controllable parameters of the al-
gorithm are the maximum frequency F 
from which δ is derived; the number of 
subsequent peaks N to consider when cal-
culating distances; the global threshold 
percentage M of the window maximum 
that a local max must exceed to be 
counted; and L, the maximum number of 
wavelet transforms to perform before a 
window is deemed pitchless. There was 
much experimentation with all of these 
numbers, and pitch detection performance 
was highest using the values listed in Ta-
ble I. 

The criteria used to evaluate the pitch 
tracker are computation time (latency), 
voiced/unvoiced determination, and over-
all pitch detection accuracy. Each of these 
performance characteristics is discussed 
below. Performance was tested using re-
corded or synthesized samples, rather than 
live input to allow for greater control and 
repeatability of tests. In general, the pitch 
tracker was calibrated to function over a 
frequency range of about 100-1500 Hz, so 
most tests were run on samples from 90-
1440 Hz to allow test over a large range 
and easy octave-based bracketing. 

 
A. Computation Time 

The latency is comprised of two parts: 
the buffering period, in which the win-

TABLE I. Pitch Tracker Parameters 
Maximum 
Frequency 

F 

Difference 
Levels 

N 

Maxima 
Threshold 

M 

FLWT 
Levels 

L 
3000 Hz 3 0.75 6 

 
Table I. List of algorithm parameters experimentally 
determined to yield best performance. 
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FIG. 4.  Frequency vs. Time for a 26-second sample of female vocals. One voiced-to-unvoiced and three 
unvoiced-to-voiced errors occurred (~0.4 % error rate). Good time and frequency resolution of the pitch
tracker reveal vibrato, toward the end of sustained notes, and vocal trills. 
 

dowed signal is acquired, and the pitch 
computation on that window. For the tests 
done on this pitch tracker, the sample rate 
was 44100 Hz and the window size was 
1024 samples, yielding a buffering time of 
23 ms. Using a 3 GHz Pentium 4 Proces-
sor, the computation time for each window 
in MATLAB was 4 ms, yielding a total la-
tency of 27 ms. The C++ implementation 
has an even shorter computation time, with 
overall latency even closer to the 23 ms 
buffering time. This implies that if the 
minimum frequency present in the signal 
were closer to 200 Hz, the window size 
could be decreased to 512 samples, reduc-
ing both window computation time and 
buffering time, nearly cutting the latency 
in half. 

 
B. Voiced/Unvoiced Detection 

The voiced/unvoiced detection in the 
pitch tracker was its weakest performance 
category. There were specific windows 
which the pitch tracker failed to recognize 
as unvoiced, yielding a spike in the fre-
quency where there should have been a 
zero to denote unvoiced. See Figure 4 for 
an illustration of this on a 26-second fe-
male vocal recording. In over 1000 sample 
windows, three unvoiced-to-voiced errors 
and one voiced-to-unvoiced error oc-

curred, yielding an error rate of less than 
0.4%. Although this is not an exhaustive 
analysis, it is representative of the algo-
rithm’s general behavior; voiced/unvoiced 
error rates among other test samples were 
less than 1%. 

 
C. Pitch Detection Accuracy 

The first pitch detection accuracy 
measure was an error-per-octave test on 
sinusoidal waveforms of constant fre-
quency within a 1024-sample window. 
The accuracy of the pitch tracker was very 
good throughout the tested frequency 
range of 90 – 1440 Hz, in increments of 1 
Hz each interval. See Figure 5 values at 
each octave of the RMS error in Hz, RMS 
error in cents (defined as hundredths of a 
musical semitone), and mean error in Hz. 
The maximum RMS error was about 0.6 
Hz in the 720-1440 Hz range. Mean errors 
were negligibly centered about zero. This 
test indicates extremely good performance 
on sinusoidal waveforms, with the RMS 
error increasing approximately exponen-
tially with frequency, doubling with every 
octave band. This leads to a nearly uni-
formly small (1 ± 0.5) RMS error in cents 
across the octave bands tested. This indi-
cates that the pitch tracker has near-
uniform accuracy in terms of musical in-
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FIG. 5.  RMS Error (Hz), RMS Error (cents),
Maximum Error Magnitude (cents), and Mean
Error (Hz) vs. Frequency Range (Hz) over four
octaves. Mean error across all octaves is about 0 ±
0.01 Hz. RMS error increases exponentially, dou-
bling with every octave, achieving a maximum
value (worst performance) of about 0.6 Hz in the
720-1440 octave. 

tervals across its frequency range. Addi-
tionally, this accuracy is below the just 
noticeable difference (JND) of pitches. 
According to [5], although the JND varies 
from person to person and across frequen-
cies, a good estimate is that the JND for 
pitch is about 5 cents. Since the maximum 
error across all frequency bands was about 
5 cents, the algorithm provides accuracy 

within the JND an overwhelming propor-
tion of the time. 

A second, qualitative analysis of accu-
racy was performed on a 26-second female 
vocal sample. See Figure 4 for the pitch 
tracker’s analysis of this sample. This 
analysis reveals the details of the singer’s 
vibrato at the end of words, and trills. No 
doublings or halvings occurred during the 
analysis. Although rare, other tested sam-
ples did have halvings, at a rate less than 
one half of one percent. No doublings 
were found in any of the analyses of test 
samples. 

The third test was a missing-
fundamental test. Signals were synthesized 
using upper harmonics (with at least one 
odd harmonic), omitting the fundamental, 
for fundamental frequencies spanning 90 – 
720 Hz by half-octaves. For each fre-
quency, nine 100-window samples were 
constructed by adding the adjacent har-
monic pairs (2nd and 3rd, then 3rd and 4th, 
and so on up to the 10th and 11th). Each of 
these nine samples was analyzed, and Ta-
ble II shows the threshold of errors for 
each missing fundamental F0.  

With the exception of the 90 Hz case, 
the pitch tracker accurately estimated the 
pitch of the missing fundamental up to the 
point at which the higher of the two 
summed harmonics was above the maxi-

TABLE II. Missing Fundamental First Failures 

F0 90 127 180 255 360 509 720 

Fn 720 1018 1620 1527 1440 1527 1440

n 8 8 9 6 4 3 2 

 
Table II: Missing Fundamental test first failures. 
For each fundamental frequency F0 (in Hz), the 
lowest frequency of the first adjacent upper har-
monic pair to fail, Fn (in Hz), is listed, as well as its 
harmonic number n. Note that the missing funda-
mental detection fails (except for the 90 Hz case) 
when at least one of Fn and Fn+1 is above the fre-
quency range of the pitch tracker. 
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mum detectable frequency. So long as 
both harmonics were below around 2500 
Hz, the pitch tracker detected the missing 
fundamental. In the 90 Hz case, the pitch 
tracker began failing when the upper har-
monics were 720 and 810 Hz; the reason 
for this failure was not determined. How-
ever, a signal containing only the 8th and 
9th harmonics is unlikely to be encountered 
in practical use. Overall, the missing fun-
damental performance was very good, 
limited mainly by the highest detectable 
frequency of the pitch tracker. 

 
D. Discussion 

This pitch detection method has very 
good resolution in the low frequencies 
(due to its use of time-domain methods) 
and in the high-frequencies (due to the av-
eraging method). This resolution enables 
accurate pitch detection as outlined above. 
The use of a 1024-sample analysis win-
dow with sounds sampled at 44100 Hz 
yields very good time resolution as well. 

When dealing with vocal samples, this 
algorithm is relatively immune to pitch 
doublings and halvings, which are a com-
mon problem for pitch trackers. For other 
types of sound, such as distorted electric 
guitar, limited testing revealed doublings 
due to strong upper harmonics. Halvings 
were rare in all samples tested, and did not 
appear systematically. 

An absolute threshold could be intro-
duced to reduce the voiced/unvoiced errors 
seen with this algorithm. A threshold re-
duces spikes in unvoiced sections, but also 
trims very low-level voiced sections, 
which was considered a poor tradeoff. If a 
high enough input signal level could be 
guaranteed, an absolute threshold could be 
a valuable and computationally cheap im-
provement for real-time applications. For 
non real-time applications, a threshold 
based on the global maximum/minimum 

value proves useful, and could be easily 
added to the existing code. 

In non real-time applications, a 
smoothing function could also be imple-
mented. Most pitch trackers that deal with 
signals in non real-time implement some 
form of a smoothing algorithm to deal 
with voiced/unvoiced errors and pitch dou-
blings and halvings. This algorithm would 
benefit similarly from such a method, but 
would lose its real-time functionality. 

The pitch tracker compared favorably 
to the established methods of cepstrum 
and autocorrelation in all three categories. 
Computationally this algorithm was 
cheaper, voiced/unvoiced errors were 
similarly frequent across methods, and 
pitch accuracy was as good or better. 

 
IV. Conclusions 

In this paper a real-time pitch tracking 
algorithm was presented. Low measure-
ment error (high pitch detection accuracy) 
expectations were exceeded by the algo-
rithm due to its good frequency resolution 
in both low and high frequencies. Short 
analysis window length led to good time 
resolution. Error rates (voiced/unvoiced 
and frequency halvings) were low, but fur-
ther improvements could be made. 
Computational costs were even lower than 
expected, yielding very low latency peri-
ods. Compared to established methods, 
this algorithm compares favorably, and 
could be useful in real-time applications 
where latency and pitch detection accuracy 
are emphasized. 
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Appendix A: wavePitch.m 
 
function freq = wavePitch(data,fs,oldFreq) 
% 
%   WAVEPITCH Determine the pitch of a given short portion of data. 
% 
%   WAVEPITCH(data, fs, oldFreq) data is a [ 1 x samples ] array. Optional 
%   inputs are fs (the sample rate of the signal, defaulting to 44100 if  
%   unspecified), and oldFreq (the frequency from the previous window). 
% 
%   N.B. Data input should be at least 256 samples long. 1024 is recommended. 
%        It also must be a multiple of 64. 
% 
%   Copyright 2005 Ross Maddox (University of Michigan) 
%              and Eric Larson (Kalamazoo College) 
 
if (nargin < 1) return; if (nargin < 2) fs = 44100; if (nargin < 3) oldFreq = 0; end 
 
oldMode = 0; 
if(oldFreq) 
  oldMode = fs/oldFreq; 
end 
 
dataLen = length(data); 
freq = 0;              % The freq to return 
lev = 6;               % Six levels of analysis 
globalMaxThresh = .75; % Thresholding of maximum values to consider 
maxFreq = 3000;        % Yields minimum distance to consider valid 
diffLevs = 3;          % Number of differences to go through (3 is diff @ third neighbor) 
 
maxCount(1) = 0; 
minCount(1) = 0; 
 
a(1,:) = data; 
aver = mean(a(1,:)); 
globalMax = max(a(1,:)); 
globalMin = min(a(1,:)); 
maxThresh = globalMaxThresh*(globalMax-aver) + aver; % Adjust for DC Offset 
minThresh = globalMaxThresh*(globalMin-aver) + aver; % Adjust for DC Offset 
 
%% Begin pitch detection %% 
 
for (i = 2:lev) 
  newWidth = dataLen/2^(i - 1); 
 
  %% Perform the FLWT %% 
 
  j = 1:newWidth; 
  d(i,j) = a(i-1,2*j) - a(i-1,2*j-1); 
  a(i,j) = a(i-1,2*j-1) + d(i,j)/2; 
 
  %% Find the maxes of the current approximation %% 
 
  minDist = max(floor(fs/maxFreq/2^(i-1)),1); 
  maxCount(i) = 0; 
  minCount(i) = 0; 
 
  climber = 0; % 1 if pos, -1 if neg 
  if (a(i,2) - a(i,1) > 0) 
    climber = 1; 
  else 
    climber = -1; 
  end 
 
  canExt = 1;   % Tracks whether an extreme can be found (based on zero crossings) 
  tooClose = 0; % Tracks how many more samples must be moved before another extreme 
 
  for (j = 2:newWidth-1)  
    test = a(i,j) - a(i,j - 1); 
 
    if (climber >= 0 && test < 0) 
      if(a(i,j - 1) >= maxThresh && canExt && ~tooClose) 
        maxCount(i) = maxCount(i) + 1; 
        maxIndices(i,maxCount(i)) = j - 1; 
        canExt = 0; 
        tooClose = minDist; 
      end 
      climber = -1; 
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    elseif (climber <= 0 && test > 0) 
      if(a(i,j - 1) <= minThresh && canExt && ~tooClose) 
        minCount(i) = minCount(i) + 1; 
        minIndices(i,minCount(i)) = j - 1; 
        canExt = 0; 
        tooClose = minDist; 
      end 
      climber = 1; 
    end 
 
    if (a(i,j) <= aver && a(i,j - 1) > aver) || (a(i,j) >= aver && a(i,j - 1) < aver) 
      canExt = 1; 
    end 
 
    if(tooClose) 
      tooClose = tooClose - 1; 
    end 
  end 
 
  %% Calculate the mode distance between peaks at each level %% 
 
  if (maxCount(i) >= 2 && minCount(i) >=2)  
 
    % Calculate the differences at diffLevs distances 
 
    differs = []; 
    for (j = 1:diffLevs)       % Interval of differences (neighbor, next-neighbor...) 
      k = 1:maxCount(i) - j;   % Starting point of each run 
      differs = [differs abs(maxIndices(i,k+j) - maxIndices(i,k))]; 
      k = 1:minCount(i) - j;   % Starting point of each run 
      differs = [differs abs(minIndices(i,k+j) - minIndices(i,k))]; 
    end 
 
    dCount = length(differs); 
 
    % Find the center mode of the differences 
 
    numer = 1;   % Require at least two agreeing differs to yield a mode 
    mode(i) = 0; % If none is found, leave as zero 
 
    for (j = 1:dCount) 
 
      % Find the # of times that distance j is within minDist samples of another distance   
      numerJ = length(find( abs(differs(1:dCount) - differs(j)) <= minDist)); 
 
      % If there are more, set the new standard 
      if (numerJ >= numer && numerJ > floor(newWidth/differs(j))/4) 
        if (numerJ == numer) 
          if oldMode && abs(differs(j) - oldMode/(2^(i-1)) ) < minDist 
            mode(i) = differs(j); 
          elseif ~oldMode && (differs(j) > 1.95*mode(i) && differs(j) < 2.05*mode(i)) 
            mode(i) = differs(j); 
          end 
        else 
          numer = numerJ; 
          mode(i) = differs(j); 
        end 
      elseif numerJ == numer-1 && oldMode && abs(differs(j)-oldMode/(2^(i-1))) < minDist 
        mode(i) = differs(j); 
      end 
    end 
 
    %% Set the mode via averaging %% 
 
    if (mode(i)) 
      mode(i) = mean(differs(find( abs(mode(i) - differs(1:dCount)) <= minDist) )); 
    end 
 
    %% Determine if the modes are shared %% 
 
    if(mode(i-1) && maxCount(i - 1) >= 2 && minCount(i - 1) >= 2) 
 
      % If the modes are within a sample of one another, return the calculated frequency 
      if (abs(mode(i-1) - 2*mode(i)) <= minDist ) 
        freq = fs/mode(i-1)/2^(i-2); 
        return; 
      end 
    end 
  end 
end 


