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Physical Quantities Associated with a Complex Sound Field 
 

Introduction: 
 

     A complex sound field  ,S r t
 at a point in space  ˆ ˆ ˆ, ,r xx yy zz


and instant in time t can be 

completely/fully/uniquely characterized by measuring two physical quantities at the space-time 
point  ,r t


: the instantaneous complex pressure  ,p r t

  (a scalar quantity) and the so-called 

instantaneous particle velocity  ,u r t
   (a 3-D/ vector quantity) 

       ˆ ˆ ˆ, , , ,x y zu r t u r t x u r t y u r t z  
        . The physical meaning of particle velocity is formally 

obtained from mathematics of vector calculus – the instantaneous particle velocity  ,u r t
  is the 

3-D/vector velocity associated with an infinitesimal volume element  dV r


of the sound 

medium centered on the space-point r


. The instantaneous complex particle velocity  ,u r t
   is 

the average over the instantaneous complex 3-D/vector velocities of individual air molecules 
contained within the infinitesimal volume element  dV r


at the time t.  On average, the thermal 

velocities of individual air molecules contained within  dV r


at time t associated with Brownian 

random walk motion cancel. 
 

     In the following, for simplicity’s sake, we focus our attention on linear 1-D complex sound 
fields/1-D sound propagation only. By linear complex sound fields, specifically we mean 
loudness levels L << 134 dB { 100  p RMS Pascals  }). We additionally restrict the discussion 

throughout this document solely to that of monochromatic, harmonically-varying complex sound 
fields associated with a single frequency component at 2 f  . For definiteness’ sake, we 
choose the ẑ  direction for sound propagation in our 1-D system(s). It is a straightforward 
exercise to generalize the following 1-D vector results to 3-D. We leave this as an exercise for 
the interested reader.  
 

     A generic, instantaneous complex quantity  ,a r t
  associated with a monochromatic, 

harmonically-varying complex sound field can be written as:  
 

             , cos sinaii t i t i t
r i a aa r t a r ia r e a r e e a r i a r e         

          where 1i   . 
 

     The time dependence associated with the generic complex quantity is of the form 
cos sini te t i t     . Note that the + sign in this definition/convention is important/physically 

significant, because we use phase-sensitive lock-in amplifier techniques in various of the 
experiments in the 193POM/406POM lab, all of which are zero degree phase-referenced to a 

sine-wave function generator signal   i t
fg oV t V e   that also is used to create the complex sound 

field. Because of this fact, we are required to adopt the i te  convention in all of our formulae in 
order that the mathematical formulae used to describe the physics coincide with the actual 
functioning of the lock-in amplifiers used in the complex/phase-sensitive acoustic experiments in 
our lab.  
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     Without getting bogged down in the gory details of how a lock-in amplifier actually works 
(which is amazing in itself!), the short/brief explanation is that by using the sine-wave function 

generator signal   i t
fg oV t V e    as a reference signal, the lock-in amplifier compares the 

complex signal    , aii ta r t a r e e 
    to that of the reference signal and figures out how much 

of the complex signal  ,a r t
 is in phase (or 180o out of phase) with the reference signal 

    cosr aa r a r 
   and how much of the complex signal  ,a r t

  is  90o out of phase with the 

reference signal     sini aa r a r 
  . Since   i t

fg oV t V e    and    , aii ta r t a r e e 
    both 

have the same time dependence, the in-phase and 90o out-of-phase components of  ,a r t
  output 

from the lock-in amplifier have no time dependence. The actual signals output from the lock-in 
amplifier are DC voltages representing the RMS (Root-Mean Square) in-phase and 90o out-of-
phase amplitudes of the complex signal  ,a r t

 being analyzed by the lock-in amplifier. The two 

DC voltages output from the lock-in amplifier can then be recorded e.g. using a pair of Analog-
to-Digital Converters (ADCs) to digitize the two DC voltages, e.g. under computer control.  
 

     For historical reasons, the in-phase amplitude component of the complex signal amplitude 

 a r
 is known as the so-called “real” component       Re cosr aa r a r a r  

     of  a r
 , the 

90o out-of-phase amplitude component of the signal amplitude  a r
 is known as the so-called 

“imaginary” component     sini aa r a r 
   of  a r

 . The 2-D figure below {known as the 

complex plane} shows the relation between the complex amplitude  a r
 , its magnitude 

 a r
 and the in-phase/ “real” and 90o out-of-phase components,  ra r


and  ia r


 respectively. 

The horizontal axis is known as the Real axis (Re), the vertical axis is known as the Imaginary 
axis (Im). Thus, in the complex plane: 

 

     The magnitude of the generic complex amplitude  a r
 is defined as (suppressing the r


-

dependence):   * 2 2
r i r i r ra aa a ia a ia a a         where the * symbol denotes complex 

conjugation * 1i i     , thus *
r ra a ia  . The complex phase of  a r

 is  1tana i ra a   

r ia a ia   

Re  

Im  

 Re cosr aa a a    

 Im sini aa a a    a  

* 2 2   r ia aa a a      

a  
 1tana i ra a   
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which is defined relative to the phase of the sine-wave signal output from the function generator 
(by definition 0fg  ) because it is used as the reference signal by the lock-in amplifier(s). 

In the table below, we summarize six complex quantities associated with a sound field  ,S r t
 : 

 

Complex Sound Field Quantity:          Magnitude:  Phase:      RMS SI Units: 

Pressure:             pi

r ip p ip p e      * 2 2
r ip pp p p          1tanp i rp p    Pascals 

1-D Part. Velocity:   uz
i

z zr zi zu u iu u e
     * 2 2

z z z zr ziu u u u u        1tan
zu zi zru u     m/sec 

1-D Part. Displcmnt: dz
i

z zr zi zd d id d e
     * 2 2

z z z zr zid d d d d       1tan
zd zi zrd d   meters 

1-D Part. Accelrn:    az
i

z zr zi za a ia a e
     * 2 2

z z z zr zia a a a a        1tan
za zi zra a     m/sec2 

1-D Spec.Ac.Impdnc: Zz
i

z zr zi zz z iz z e
     * 2 2

z z z zr ziz z z z z         1tan
zz zi zrz z   Ac.Ohms 

1-D Sound Intensity:  Iz
i

z zr zi zI I iI I e
     * 2 2

z z z zr ziI I I I I         1tan
zI zi zrI I    Watts/m2 

 

1-D/Longitudinal Complex Particle Displacement: 
 

     The 1-D/longitudinal complex particle displacement  ,zd r t
 is obtained from the 1-D/ 

longitudinal complex particle velocity  ,zu r t
 since they are related to each other via: 

   , ,z zu r t d r t t  
  . For a harmonically-varying/pure-tone/single frequency complex sound 

field    , dz
ii t

z zd r t d r e e


    and    , uz
ii t

z zu r t u r e e


   , thus: 

         , , ,u dz z
i ii t i t

z z z z zu r t u r e e d r t t i d r e e i d r t
           

        . Note that this 

relation tells us that the complex phases are related to each other via: 2
z zu d     or: 

2
z zd u     since: 2 cos 2ii e     sin 2i  .  Expanding the LHS and RHS of this 

relation:  z zr zi zr zi zr zi zu u iu i d id i d d i d            and equating real and imaginary 

parts on the LHS to those on the RHS we see that:    , ,zr ziu r t d r t 
 

 and 

   , ,zi zru r t d r t 
, where 2 f  . Thus:    , ,zr zid r t u r t 

 
 and    , ,zi zrd r t u r t  

 
. 

 

1-D/Longitudinal Complex Particle Acceleration: 
 

     Likewise, the 1-D/longitudinal complex particle acceleration  ,za r t
 is obtained from the 1-D/ 

longitudinal complex particle velocity  ,zu r t
 since they are related to each other via: 

   , ,z za r t u r t t  
   . For a harmonically-varying/pure-tone/single frequency complex sound field, 

   , az
ii t

z za r t a r e e


    and    , uz
ii t

z zu r t u r e e


   , thus: 

         , , ,a uz z
i ii t i t

z z z z za r t a r e e u r t t i u r e e i u r t
           

         . This relation tells us that 

the complex phases are related to each other via: 2
z za u    .  Expanding the LHS and RHS of 
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this relation  z zr zi zr zi zr zi za a ia i u iu i u u i u            and again equating real and imaginary 

parts on the LHS to those on the RHS, we see that:    , ,zr zia r t u r t 
 

 and    , ,zi zra r t u r t 
. 

1-D/Longitudinal Complex Specific Acoustic Impedance:  
 

     The 1-D/longitudinal complex specific acoustic impedance  ,zz r t
 is a physical property of 

the medium in which sound propagation occurs and is defined as the ratio of complex pressure to 

1-D complex particle velocity:      , , ,z zz r t p r t u r t
     (the acoustic analog of the complex 

form of Ohm’s law: Z V I    ). For a harmonically-varying/single frequency complex sound 

field, since    , pii tp r t p r e e 
    and    , uz

ii t
z zu r t u r e e


    then we see that in general, the 

1-D/longitudinal complex specific acoustic impedance is also a time-independent quantity, i.e. 

     z zz r p r u r
      (for loudness levels << 134 dB). Suppressing the  r


-dependence: 

 

2 2 2 2

                                                                     

r i r i zr zi r zr i zi i zr r zi
z zr zi

z zr zi zr zi zr zi zr zi zr zi

p ip p ip u iu p u p u p u p up
z z iz i

u u iu u iu u iu u u u u

          
                      




2 2                  r zr i zi i zr r zi

z z

p u p u p u p u
i

u u

    
     
   
    

 

 

 We see that: 22 2
r zr i zi r zr i zi

zr
zr zi z

p u p u p u p u
z

u u u

 
 

 
  and: 22 2

i zr r zi i zr r zi
zi

zr zi z

p u p u p u p u
z

u u u

 
 

 
 

 

Since the 1-D/longitudinal complex specific acoustic impedance is the ratio of complex pressure 
to complex particle velocity z zz p u   , the SI units of complex specific acoustic impedance are: 
 

 2 22
2

3 2

kg-m s m Pascals  N m kg-m
kg s-m  

 m s  m s  m s m -s s

RMSRMS RMS
Acoustic Ohms

RMS RMS RMS
      

 

1-D Complex Sound Intensity:  
 

The 1-D/longituding complex sound intensity is defined as the product of complex pressure and 

the complex conjugate of the 1-D/longitudinal particle velocity:      *, , ,z zI r t p r t u r t
      

(Again, the acoustic analog of complex electrical power: *P VI   ). For a harmonically-varying/ 

single frequency complex sound field    , pii tp r t p r e e 
    and    * , uzi t

z zu r t u r e e
 

   ; the 

1-D/longitudinal complex intensity is also a time-independent quantity, i.e.      *
z zI r p r u r
       

(for loudness levels << 140 dB). Suppressing the  r


-dependence: 
 

      *
z zr zi z r i zr zi r zr i zi i zr r ziI I iI pu p ip u iu p u p u i p u p u             

 

            *Re Re Re Rezr z z r i zr zi r zr i zi i zr r zi r zr i ziI I pu p ip u iu p u p u i p u p u p u p u             
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            *  Im Im Im Imzi z z r i zr zi r zr i zi i zr r zi i zr r ziI I pu p ip u iu p u p u i p u p u p u p u             
 

Since the 1-D/longitudinal complex intensity is the product of complex pressure with the 

complex conjugate of particle velocity *
z zI pu   , the SI units of complex intensity are: 

 

2
2 2

 N  m  J s
 Pascals m s  Watts m

m s m

RMS RMS RMS
RMS RMS RMS      

 

Since: *
z zI pu    and z zz p u    then z zp u z    thus we also see that: 

2* *
z z z z z z zI pu u u z u z         .  

 

Since:  2 2

z zr zi z zr zi z zI I iI u z iz u z         we also see that 
2

zr z zrI u z   and 
2

zi z ziI u z  . 
 

1-D Sound Intensity Factor (SIF) for Harmonic (i.e. Sine-Wave) Complex Sound Fields: 
 

Since cos cos
z zzr z I z II I p u       and *sin sini I II I p u      for harmonically-varying 

(i.e. sine-wave/single-frequency) complex sound fields, the 1-D Sound Intensity Factor, SIF is 

defined as:  *
100 cos 100 100 %

z

zr zr
I

zz

I I
SIF

p uI


 
      
 
 
  

.   

 

The definition of the 1-D/longitudinal Sound Intensity Factor, SIF is again in complete analogy 
to the definition of the so-called Power Factor, PF associated with complex electrical power:  
 

*cos cosr P PP P V I      and:  
*

100 cos 100 100 %r r
P

P P
PF

P V I


 
      
 
 
   .  

 

The Relationship Between the Complex Phases
zI and

zz : 
 

We explicitly note that: 1tan
z

zi
I

zr

I

I
   

  
 

 = 1tan
z

zi
z

zr

z

z
   

  
 

 because: zi i zr r zi

zr r zr i zi

I p u p u

I p u p u





  

whereas: 
2

zi i zr r zi

zr z

z p u p u

z u




 2

r zr i zi

z

p u p u

u

 
 

 
  

i zr r zi zi

r zr i zi zr

p u p u I

p u p u I

     
  
 

. 

 

The Relation Between 
z zI z  and , 

zp u  : 
 

Since z zz p u    and *
z zI pu    then we see that: 

     p u p uz up z zz z
i ii ii

z z z z zz z e p e u e p u e z e
      

          and 

     * *    p u p uI up z zz z
i ii ii

z z z z zI I e p e u e p u e I e
                since z zz p u    and *

z zI p u    

thus we see that 
z z z zz I p u p u         , i.e. physically the complex phases

z zz I  are the 
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difference between the phase of the complex pressure p and the phase of the complex longitudinal 

particle velocity u as shown in the two complex plane figures below: 

 
 
 
 
 
 
 

 
 
 
 
There are several limiting cases of special interest: 
 

When 0
z z z zz I p u p u           the complex pressure  ,p r t

 and 1-D/longitudinal 

complex particle velocity  ,zu r t
 are in phase with each other; the Sound Intensity Factor 

100 cos 100 cos 100%
z zI zSIF       .  

 

When o90
z z z zz I p u p u            the complex pressure  ,p r t

 leads/lags the 1-D/ 

longitudinal complex particle velocity  ,zu r t
 by o90 in phase; the Sound Intensity Factor 

100 cos 100 cos 0%
z zI zSIF       .  

 

When o180
z z z zz I p u p u            the complex pressure  ,p r t

 leads/lags the 1-D/ 

longitudinal complex particle velocity  ,zu r t
 by o180 in phase; the Sound Intensity Factor 

100 cos 100 cos 100%
z zI zSIF        .  

 
Other Useful Relations: 
 

     Using z zz p u    and *
z zI pu   , eliminating the complex particle velocity zu we can see that 

2 * *
z zp pp I z      , which is a purely real quantity. If we instead eliminate the complex pressure 

p  we obtain 
2 *

z z z z zu u u I z      , which is also a purely real quantity. Equivalently: 
2

z z zI u z   . 
 

Also:
2* *

2 *
2* *z z z

z z z z z

pp p pp
z z z

u u u u u
   

     
    

 and:      2 2 2* * * * *
z z z z z z z zI I I pu p u pp u u p u                . 

 

Acoustic potential, kinetic and total energy densities: (n.b. all energy densities are purely real quantities!) 

Acoustic potential energy density:    2 2 21
2    p ow p c RMS Joules m  , o = ambient density of air 

Acoustic kinetic energy density:     2 21
2    u ow u RMS Joules m               c = speed of sound in air 

zu  p  

Re  

Im  

zu  

p  

z zI z   

zI  

Re  

Im  

z z

z

I z

p u

 

 



 
 zz  
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Total acoustic energy density:          2 22 21 1
2 2    tot p u o ow w w p c u RMS Joules m        

 

Time-averaged acoustic energy densities:  

Since 
2

pw p   and 
2

uw u  , for harmonic (i.e. sine-wave) dependence, we see that: 

1
2p pw w  and 1

2u uw w , thus: 1 1 1
2 2 2tot p u p u p u totw w w w w w w w       . 

 

Ratio of PE/KE densities: 

Using 
2 *

z zp I z    and 
2

z zu I z    we see that:    2 2 * 21 1
2 2p o z z ow p c I z c      and: 

 21 1
2 2u o o z zw u I z     . Taking the ratio of potential to kinetic energy density:  

 

   
 

2 21 2* 21 *
2 2

2 2 2 2 211
22

o z z op zz z

u o oo z zo

p c I z cw zz zPE

KE w c cI zu

 

 
    

   
 

  

 

However, the characteristic specific acoustic longitudinal impedance of associated with 1-D plane 

waves propagating in open/free air is: 415 free
field o oz c z     (n.b. a purely real quantity – since 

p and u are in phase with each other for 1-D plane waves propagating in the free-air sound field).  
 

Thus: 
   

 

2 21 2 2* 21 *
2 2

2 2 2 2 2 211
22

o z z op z zz z

u o o oo z zo

p c I z cw z zz zPE

KE w c c zI zu

 

 
     

    
 

.  

 

In a free-air sound field we see that 1p uPE KE w w  , i.e. the acoustic energy density 

associated  with a free-air sound field has equal amounts of PE and KE density – again, 
analogous to the result for monochromatic plane EM waves propagating in free space. 
 

Since  2 221 1
2 2tot p u o ow w w p c u      , then again using 

2 *
z zp I z   ,  

2

z zu I z    and 

415 free
field o oz c z     we see that: 

 

 
* * *

*1 1 1 1 1
2 2 2 2 2 22 2 2 * 2

1 1z z z z z z z
tot p u o o o o z z

o z o z z o z

I z I I z I z
w w w I z

c z c z z z z
   

 

       
              

         

       
   

  

which (again) is a purely real quantity.  
 

We can turn this relation around such that the complex 1-D sound intensity zI  can be written in 

terms of totw and complex *Z as:  
 

* * *1 1 1
2 2 22 2 22 2 2

1 1 1 1 1 1

tot tot tot
z

o z o z o
o o oz z z

w cw cw
I

z c z z Z
z z zz z z
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     For a free-air/purely “active” sound field associated with propagation of monochromatic 
plane waves, the complex pressure and 1-D particle velocity are in phase with each other, thus 

the complex specific acoustic impedance is a purely real quantity, i.e. *
 
free

z z z field o oz z z z c      , 

and thus we also see that  
free

z field totI cw , is also a purely real quantity, analogous to the result e.g. 

for propagation of monochromatic EM plane waves in free space: free EM
EM totI cw . 


