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The Acoustical Physics of a Standing Wave Tube

A typical cylindrical-shaped standing wave tube (SWT) {aka impedance tube} of length L and
diameter D <« L with infinitely rigid walls and closed ends is shown in the figure below:

Acoustical Standing Wave Tube (SWT):
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Sound energy is input to the SWT at the position z = 0, e.g. using a sine-wave function generator
connected to some kind of acoustical transducer, such as a wafer-thin piezo-electric transducer (or a

loudspeaker). Ideally-speaking, the transducer should have no frequency-dependent phase-shift(s)
relative to the driving sine-wave function generator. However, in the real world, such devices do not
exist. At frequencies below the lowest cutoff frequency of the SWT ( f° =1.84v/zD ~ 3300 Hz for

v=345m/sand D =6cm) only 1-D type plane waves can propagate in the SWT.

Pressure (p) and differential/particle velocity (uz) microphones are co-located at the “generic”
position z along the symmetry axis of the SWT. They are used to record the complex instantaneous
total pressure and the instantaneous complex 1-D longitudinal/z-component of the total particle
velocity at that location associated with the presence of right- and left-moving acoustic traveling
plane waves propagating in the SWT. The resultant instantaneous complex pressure standing wave at
the point z is thus a linear superposition of these two traveling plane waves:

p(2.t)= A(K)e" ")+ B(K)e" ) = A(K)e Wi + B(K)eRe =[ A(K)e ¥+ +B(K)e ﬂ

where the complex, frequency-dependent wavenumber IZ( )=k( +IK a)/v +|/<
the * denotes complex conjugation, i.e. k" (@) =k (@)~-ix () and |_\/_and thus —i = \/—_.

The use of k™ ensures that we are always appropriately mathematically describing decaying
exponential attenuation phenomena, i.e. for z > 0, using e ™ for both right- and left-traveling waves
(as opposed to unphysical, exponentially growing phenomena, i.e. e"**with distance).

An {extremely} important micro-detail here is that in order to be able to correctly compare

theoretical prediction(s) to experimental data, the choice of using e'*vs. e ™" in the theory is in fact
not arbitrary. In the UIUC Physics 193POM/406POM SWT experiment, in order to obtain the
necessary phase-sensitive information on the complex nature of pressure (p) and 1-D particle
velocity (uz) as a function of frequency, the electrical signals output from the pressure and particle
velocity microphone preamplifiers are each input to separate lock-in amplifiers (SRS model # DSP-
830) which also use the signal output from the sine-wave function generator as the reference signal
for each of the lock-in amplifiers. In our SWT experiment we have explicitly selected 0° referencing
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of the two lock-in amplifiers to the function generator’s sine-wave signal, and thus because of the

way a lock-in amplifier works, also implicitly means that we have selected the e*** sign convention.
Had we instead selected e.g. 180° referencing of the lock-in amplifier to the sine-wave reference

signal, then we would have implicitly instead selected the e ' sign convention. Because of our

e choice in referencing of the lock-in amplifiers to the function generator’s sine-wave signal, both
the instantaneous complex pressure and instantaneous complex particle velocity precess (i.e. rotate)

counter-clockwise (CCW) in the complex plane as time increases, since e = cos wt +isin ot
whereas e = cos wt —isin wt .

Generically, the instantaneous complex pressure (SI units: Pascals) and instantaneous complex
particle velocity (SI units: m/s) can be written as:

B(z.t)=p, (z.t)+ip (z,t)=|p(z)e”e"™| and |0, (z,t)=u, (z,t)+iu (z,t)=|d(z)]e"e"™

The real parts of the complex instantaneous pressure p(z,t)and/or complex instantaneous
1-D particle velocity a, (z,t) are in-phase (if +ve) or 180° out-of phase (if —ve) relative to the
reference signal output from the sine-wave function generator; the imaginary parts of the complex
instantaneous pressure |5( z,t)and/or complex instantaneous 1-D particle velocity 0, (z,t) are +90°
out-of-phase (if +ve) or —90° out-of phase (if —ve) relative to the reference signal output from the

sine-wave function generator, as shown below {for a general case/generic situation} in the so-called
phase diagram — i.e. the complex plane, at time t = O:

Imaginary
AXis

A Instantaneous Complex Pressure Amplitude

p(z.t)=p (z.t)+ip(z,1)

oy (z.t)=tan[p, (2.1)/p,(2.1)]

Ps _ ~ Real

>

\ % " Axis
Instantaneous Complex Partit_:le Velocity Amplitude Amplitude of Sine-Wave
UZ(Z,t)EUr(Z,t)+IUi(Z,t) Function Generator

Signal on Real Axis
@, (z.t)=tan*[u;(z,t)/u, (z.1)]
For small amplitudes, the instantaneous complex pressure and instantaneous 3-D complex vector

particle velocity are related to each other via Euler’s equation for compressible, inviscid fluid flow
{inviscid fluid flow means that any/all viscous/dissipative forces < inertial forces}:

—p, 00 (F,t) /6t = Vp(F,t) | where p, = mass volume density of the fluid and |G (¥, t)-V {d(F,t)} =0

is assumed. For {bone-dry} air at NTP, p, =1.204 kg/m3 . For the SWT with 1-D longitudinal
particle velocity measurement, the corresponding 1-D Euler’s equation for plane waves propagating
in the SWT reduces to|—p, o0, (z,t) /ot = p(z,t)/oz |
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The total instantaneous complex pressure at the position z associated with the presence of a standing
plane wave in the SWT is the instantaneous linear superposition of an (overall) right-propagating
complex traveling plane wave and an (overall) left-propagating traveling plane wave:

f)(Z,t) = [A(E)e"im + g(ﬁ)e+ik~z:|e+m

The overall instantaneous complex pressure amplitude is in fact a linear superposition of an
infinite number of individual right- and left-moving complex traveling pressure waves with complex

amplitudes &, (k)and b, (k), n=0,1,2,3..00 respectively, each of which are associated with the

sine-wave signal output from the acoustical transducer (located at z = 0) at times earlier than t = 0.
Thus, mathematically the complex amplitudes associated with right- and left-moving complex

amplitudes can each be represented by the infinite series A(IZ) =>4, (IZ) and E(E) =>'b, (IZ) .
n=0 n=0
Both of these series representations can be represented graphically via phasor diagrams in the
complex plane, e.g. for A(IZ) = Zén (IZ) as shown in the figure below for t = 0:
n=0
Imaginary

AXis
A

Precisely on a resonance of the SWT, the individual complex amplitudes &, (IZ) and Bn (k~)

associated with the individual right- and left-moving traveling waves respectively, are perfectly in
phase with each other, i.e. all of the individual relative phases 5a =2n7 =0, 55* =2nz =0 and thus

the overall phasesA% = > 5, =0and A; =) &, =0, graphically corresponding to “straight-line”
n=0 n=0

phasor diagrams for A(K ) = ian (k) and B(K)= iﬁn (k).
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0

Explicitly writing out the complex pressure amplitudes A( ) Za ( ) and L5>( )zz n( )

n=

associated with the overall right- and left-moving complex plane waves:

0

A(IZ): A)efi&g n Aoe’igz +A)efi‘§; +A)e—i5; 4= A\)[e—iég Lol | g +efi‘§;..} _ Abze*igg

n=0

And:

E(IZ) — AP+ A+ AT L AT 4= A [e’i‘% +e % e +e"‘§3..1 = Aoie"‘;; = A(IZ)
n=0

The multiplicative phase factor e associated with the n term in each of the two infinite series
arises from the fact that each such contributing wave had to originate at an earlier time, t, <0 in
order for all such waves to arrive simultaneously at the z = z position at the time t = t. Note that since
' rotates complex quantities CCW in the complex plane as the time t increases, the sign in the
argument of the e i phase factor associated with waves arriving at the z = z position at the time t = t
from the earlier time t, <0 must be negative. Since the elapsed time for n round trips of right- or

left-moving waves propagating in the SWT is At, =t—t = n(2L)/v =2nL/v, then the complex
phase shift associated with n round trips of right- or left-moving waves propagating in the SWT is
5" = wAt, = 2nLe/¥ = 2nk"L|and thus |e* = g 2™t — g 2kl _ g 2xlg 2ik |

Thus: ~( ) A)+Aoefz"" —2lkL+AOe—4KL —4|kL+AOe—GKL Bk, i ~2nxl g -2inkL _ ~(|2)

n=0

Note that since the end walls of the SWT (located at z = 0 and z = L respectively) are assumed to
be infinitely rigid, we have tacitly/implicitly assumed that no additional phase shift(s) of the right-/
left-moving traveling waves occurs upon reflection at the end walls. If such reflection-induced phase
shifts were to occur, then additional phase factors e " and e "™ would need to be included in the
above expressions in order to explicitly take into account/properly mathematically describe
general/generic phase shifts associated with reflection of the individual right- and left-moving plane
waves at {non-perfectly rigid} end-walls of the SWT.

Is it possible to obtain an analytic, closed-form expression for the infinite series associated with
the complex amplitudes A(IZ) and B (IZ) ? The answer is a most definite yes!

Defining |t = 2xL > 0] and |x = 2kL], and noting that ie‘"‘e‘"‘X = ie‘”‘ COSNX — iie‘nt sinnx| the

n=0 n=0 n=0
analytic/closed-form expressions for the two oo series on the RHS of this relation, for t > 0 are [1I:

Ze_m sinnx = %(L] and: Ze‘m COS NX :%(&Hj :
n=0

cosht—|cos X cosht —cos x
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e ~ ~ 2| cosht —cos x cosht— |cos x|

Thus: ze—nt Cosnx_ize—ntsinnxzze—nte—inx :£|:( sinht +1j—|( SIN X ]:|

Hence the analytic/closed-form expression for complex A(R) = B(E) is:

T U L2 | sinh (2xL) _ sin(2kL)
A(k)-B(k)—A,LZ(;e ° :|_EAD{(:H—COSh(ZKL)—COS(ZkL)j_I(COSh(ZK‘L)—|COS(2kL)|]]

Thus, the overall instantaneous complex pressure amplitude p(z,t) is:

p(zt)= [A(R)e’"?Z + I.%(IZ)e*”ZZ}e*“”t = A(IZ)[e’iE*Z Jre*"zz}e““’t = ZA(R)e”“ cos(kz) e

o sinh (2«L) : sin(2KL) viot
= Age COS(kZ)Kl*Cosh(zxL)cos(sz)J_l(COSh(ZKL)—\COS(ZKL)\He

Note that the physics associated with standing plane acoustic waves inside a SWT is similar to
that associated with standing plane electromagnetic/visible light waves inside a Fabry-Perot etalon
with semi-transparent/partially-silvered and/or dielectric-coated plane-parallel mirrors!

N PN sinh(2xL) : sin(2kL)
Defining: 7(k)_“1+ cosh(ZKL)—cos(ZkL)J_{cosh(ZKL)‘cos(ZkL)‘H

Then p(z,t) can be written as: |P(z,t)= Aj(l?)e’” cos(kz)e"

The 1-D complex particle velocity is of the general form d, (z,t) =0, (z)e" and is related to the
complex pressure p(z,t) viathe 1-D Euler equation:

od, (z,t) op(zt)
ot

_po

.1 (7 . i
Thus: |0,(z,t)=—-1— ke ™ kz +ksinkz|e"
us: |0, (z,t) |a)p0 A)?( )e [xcoskz +ksinkz]e

Since V(@) = w/k (w)|this relation can also be written as:

0, (z,t)=-i p%\/&?(@e“ Kfj coskz +sin kz}e”“’t

For inviscid fluid flow, note that (x/k )< 1or equivalently, that x <k .
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The complex longitudinal particle displacement {from its nominal equilibrium position}f(z,t) IS

related to the complex longitudinal particle velocity U, (z,t) via|d, (z,t) = 0&(z,t)/at

Thus: |, (z,t)=— 1v ~(I2)e‘“Kfjcoskzjtsinkz}e“”I
wp,

The complex specific acoustic longitudinal impedance Z(z) of the SWT tube at the position z is
defined as the ratio of complex pressure to complex longitudinal particle velocity:

O e e

Note that the complex specific acoustic impedance Z(z) of the SWT is purely imaginary, and is also
a time-independent quantity, since p(z,t) and G, (z,t) have the same time-dependence factor e*'*.

The Sl units of complex specific acoustic longitudinal impedance Z(z) are Pa-s/m=kg/s-m?, also
known simply as acoustic ohms, also known as Rayls (in honor of Lord Rayleigh).

The 1-D complex longitudinal acoustic intensity T, (z) at the position z is defined as:

I,(z)=1p(z,t)0 :(z,t)=%|§( )0, (z)=- AJZ ?(E)re‘z’“cos(kz)KE]coskHsinkz}

2po

The complex longitudinal acoustic intensity I (z) inthe SWT is purely imaginary and is also a
time-independent quantity. The SI units of complex acoustic intensity I, (z) are Watts/m2 :

The time-averaged total acoustic energy density < w," (2 )> at the position z is the additive sum of
the individual time-averaged acoustic potential energy density <W§°" (z)> and the time-averaged

acoustic Kinetic energy density < whn (z)> ;

e o=t -{ P Gk o {50 Lo

The time-averaged energy densities are purely real, time-independent quantities. The Sl units of
energy density are Joules/m3 :
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Precisely at one of the resonant frequencies of the SWT | f, =v/A, = nv/2L|, with both of the p

and u; mics located e.g. at z = L, then |k,L = 2zL/4, =nz|, and hence |cos(k,L) = cos(nz) =(-1)"

cos(2k,L)=cos(2nz)=

1

,|sin(k,L)=sin(nz)=0|and |sin(2k,L)=sin(2nz)=0|and thus the

instantaneous overall complex pressure amplitude at z = L on the n™ resonance of the SWT becomes:

(v s e[ sinh(2«L) vt
p.(z=Lt)=(-1) Age (—COSh(ZKL)—l_'_lJe

) 1
Now since |coth X =

_ coshx _coshx-1

, then we see that

tanh

and using the fact that(? {tanh (4 x)

X sinhx sinh x

1

sinh x : .
and thus if we see that the above expression for

coth($x)

" tanh (4x) " coshx—1

P, (z=L,t) on the SWT resonances can equivalently be written as:

B, (z=Lt)=(-1)" Ae " [coth(xL)+1]e"™

Thus, we see that there are pressure anti-nodes at both z =0 and z = L on the resonances of the SWT
for infinitely rigid/closed end walls.

The instantaneous 1-D longitudinal particle velocity at z = L on the resonances of the SWT is:

q, (z=L,t)=-i = Ae™ (ﬁ]( sinh (2«L) 1 +1J oo

PV k, )\ cosh(2«xL)-

Again, using the relation

1 sinhx
tanh(4x) coshx-1

coth($x)= the longitudinal particle velocity at

z = L on one of the resonances of the SWT can be rewritten as:

0, (z=Lt)=-i & Ae ™t (kﬁl[coth(ﬂ)ﬂj gt

PV

n

Note that on a resonance

of the SWT, 0, (z=L,t) is —90° out-of-phase relative to f, (z=L,t).

The instantaneous 1-D longitudinal particle displacement at z = L on a resonance of the SWT is:
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1 sinhx
tanh(1x) coshx-1
z = L on one of the resonances of the SWT can be rewritten as:

Again, using the relation coth (4 x) =

the longitudinal particle displacement at

ggzn (Z = L,t) = —ﬂ Aoe—KL {kﬁj(coth(,d_)_i_l)enwnt

a)npo n

Thus we see that on the resonances of the SWT, fzn (z = L,t) is —90° out of phase relative to

0, (z=L,t) and is —180° out of phase relative to f, (z=L,t).

z

In terms of a phasor diagram, the complex pressure p, (z = L,t) , complex longitudinal particle

velocityd, (z=L,t) and complex longitudinal displacement &, (z=L,t) on the resonances of the
SWT as observed at z = L and at time t = O are oriented as shown in the figure below:

Imaginary
AXis
A

n.b. All e*it phasors rotate
Zncoag \ increasing time, t

P (LO) & oaa (L) ' Rea
£ (L) Prem(LO) Axis
a, (L0

The complex specific longitudinal acoustic impedance at z = L on the resonances of the SWT is
purely imaginary and time-independent:
p.(z=L,t )
Suifs o) ( )i poV(ﬁJ
u, (z= K

(z=L,t)

The complex longitudinal intensity at z = L on the resonances of the SWT is also purely imaginary
and time-independent:

z,(z=L)

I, (z=L) z% p.(z=L)0, (z=L)= Jri%i/e-“L (kﬁj[coth(zcl_)uf
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Note that since there are acoustic standing waves present in the SWT, the complex longitudinal
sound intensity fz (z) must be purely reactive (i.e. purely imaginary). A non-zero value associated

with the real component of I, (z) is due to an actual {time-averaged} flux, or flow of energy down
the SWT - this cannot be due to a standing wave — only a traveling sound wave can have this!

The time-averaged total energy density at the position z = L on a resonance of the SWT is:

P, (z=L,t i 2
(i (z=L)) =z (2= L))+ {wi! (2= L>>=%p"(;—vz)‘+%po g, (2=L1)
:%2\32,2 o2t I:Coth(KL)+1]2 +%p?\32/2 g2t [k—KJ I:COth(KL)-I—l]Z
or: (W (z=L))=(wr (z=L))+(we" (z=L)) :%pijzem [1{%] ][coth(ch)+1T

Note that since (x/k, ) <1for inviscid fluid flow, on the resonances of the SWT we see that

potl

<Wan (z= L)> > <w§l"

(z:L)>.
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In this reference, please note that the expression

D e Msinnx= (
n=0

sin x

cosht —cos x

J

is factually

in error in the 2" and 3" quadrants (where cos x < 0). The correct expression, valid in all four

quadrants is:

sin X

ot _
2 e sinnx= cosht —|cos |

n=0

i)

[2] ibid, page 25.
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