## The Acoustical Physics of a Standing Wave Tube

A typical cylindrical-shaped standing wave tube (SWT) \{aka impedance tube\} of length $L$ and diameter $D \ll L$ with infinitely rigid walls and closed ends is shown in the figure below:


Sound energy is input to the SWT at the position $z=0$, e.g. using a sine-wave function generator connected to some kind of acoustical transducer, such as a wafer-thin piezo-electric transducer (or a loudspeaker). Ideally-speaking, the transducer should have no frequency-dependent phase-shift(s) relative to the driving sine-wave function generator. However, in the real world, such devices do not exist. At frequencies below the lowest cutoff frequency of the SWT ( $f_{c}^{1,0} \simeq 1.84 v / \pi D \sim 3300 \mathrm{~Hz}$ for $v=345 \mathrm{~m} / \mathrm{s}$ and $D=6 \mathrm{~cm}$ ) only 1-D type plane waves can propagate in the SWT.

Pressure $(p)$ and differential/particle velocity $\left(u_{z}\right)$ microphones are co-located at the "generic" position $z$ along the symmetry axis of the SWT. They are used to record the complex instantaneous total pressure and the instantaneous complex 1-D longitudinal/z-component of the total particle velocity at that location associated with the presence of right- and left-moving acoustic traveling plane waves propagating in the SWT. The resultant instantaneous complex pressure standing wave at the point $z$ is thus a linear superposition of these two traveling plane waves:
$\tilde{p}(z, t)=\tilde{A}(\tilde{k}) e^{i\left(\omega t-\tilde{k}^{\tilde{k} z}\right)}+\tilde{B}(\tilde{k}) e^{i(\omega t+\tilde{k} z)}=\tilde{A}(\tilde{k}) e^{-i \tilde{k}^{*} z} e^{i \omega t}+\tilde{B}(\tilde{k}) e^{i \tilde{k} z} e^{i \omega t}=\left[\tilde{A}(\tilde{k}) e^{-i \tilde{k}^{*} z}+\tilde{B}(\tilde{k}) e^{+i \tilde{k} z}\right] e^{+i \omega t}$
where the complex, frequency-dependent wavenumber $\tilde{k}(\omega) \equiv k(\omega)+i \kappa(\omega)=\omega / v(\omega)+i \kappa(\omega)$; the * denotes complex conjugation, i.e. $\tilde{k}^{*}(\omega) \equiv k(\omega)-i \kappa(\omega)$ and $i \equiv \sqrt{-1}$ and thus $-i \equiv-\sqrt{-1}$. The use of $\tilde{k}^{*}$ ensures that we are always appropriately mathematically describing decaying exponential attenuation phenomena, i.e. for $z>0$, using $e^{-\kappa z}$ for both right- and left-traveling waves (as opposed to unphysical, exponentially growing phenomena, i.e. $e^{+\kappa z}$ with distance).

An \{extremely\} important micro-detail here is that in order to be able to correctly compare theoretical prediction(s) to experimental data, the choice of using $e^{i \omega t}$ vs. $e^{-i \omega t}$ in the theory is in fact not arbitrary. In the UIUC Physics 193POM/406POM SWT experiment, in order to obtain the necessary phase-sensitive information on the complex nature of pressure $(p)$ and 1-D particle velocity ( $u_{z}$ ) as a function of frequency, the electrical signals output from the pressure and particle velocity microphone preamplifiers are each input to separate lock-in amplifiers (SRS model \# DSP830) which also use the signal output from the sine-wave function generator as the reference signal for each of the lock-in amplifiers. In our SWT experiment we have explicitly selected $\underline{0^{\circ} \text { referencing }}$
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
of the two lock-in amplifiers to the function generator's sine-wave signal, and thus because of the way a lock-in amplifier works, also implicitly means that we have selected the $e^{+i \omega t}$ sign convention. Had we instead selected e.g. $180^{\circ}$ referencing of the lock-in amplifier to the sine-wave reference signal, then we would have implicitly instead selected the $e^{-i \omega t}$ sign convention. Because of our $e^{+i \omega t}$ choice in referencing of the lock-in amplifiers to the function generator's sine-wave signal, both the instantaneous complex pressure and instantaneous complex particle velocity precess (i.e. rotate) counter-clockwise (CCW) in the complex plane as time increases, since $e^{+i \omega t}=\cos \omega t+i \sin \omega t$ whereas $e^{-i \omega t}=\cos \omega t-i \sin \omega t$.

Generically, the instantaneous complex pressure (SI units: Pascals) and instantaneous complex particle velocity (SI units: $\mathrm{m} / \mathrm{s}$ ) can be written as:

$$
\tilde{p}(z, t) \equiv p_{\mathrm{r}}(z, t)+i p_{\mathrm{i}}(z, t)=|\tilde{p}(z)| e^{i \varphi_{\tilde{p}}} e^{+i \omega t} \text { and } \tilde{u}_{z}(z, t) \equiv u_{\mathrm{r}}(z, t)+i u_{\mathrm{i}}(z, t)=|\tilde{u}(z)| e^{i \varphi_{\tilde{u}}} e^{+i \omega t}
$$

The real parts of the complex instantaneous pressure $\tilde{p}(z, t)$ and/or complex instantaneous 1-D particle velocity $\tilde{u}_{z}(z, t)$ are in-phase (if $+v e$ ) or $180^{\circ}$ out-of phase (if $-v e$ ) relative to the reference signal output from the sine-wave function generator; the imaginary parts of the complex instantaneous pressure $\tilde{p}(z, t)$ and/or complex instantaneous 1-D particle velocity $\tilde{u}_{z}(z, t)$ are $+90^{\circ}$ out-of-phase (if $+v e$ ) or $-90^{\circ}$ out-of phase (if $-v e$ ) relative to the reference signal output from the sine-wave function generator, as shown below \{for a general case/generic situation\} in the so-called phase diagram - i.e. the complex plane, at time $t=0$ :


For small amplitudes, the instantaneous complex pressure and instantaneous 3-D complex vector particle velocity are related to each other via Euler's equation for compressible, inviscid fluid flow \{inviscid fluid flow means that any/all viscous/dissipative forces < inertial forces\}:
$-\rho_{o} \partial \overrightarrow{\tilde{u}}(\vec{r}, t) / \partial t=\vec{\nabla} \tilde{p}(\vec{r}, t)$ where $\rho_{o}=$ mass volume density of the fluid and $\overrightarrow{\tilde{u}}(\vec{r}, t) \cdot \vec{\nabla}\{\overrightarrow{\tilde{u}}(\vec{r}, t)\}=0$
is assumed. For $\{$ bone-dry $\}$ air at NTP, $\rho_{o}=1.204 \mathrm{~kg} / \mathrm{m}^{3}$. For the SWT with 1-D longitudinal particle velocity measurement, the corresponding 1-D Euler's equation for plane waves propagating in the SWT reduces to $-\rho_{o} \partial \tilde{u}_{z}(z, t) / \partial t=\partial \tilde{p}(z, t) / \partial z$.

The total instantaneous complex pressure at the position $z$ associated with the presence of a standing plane wave in the SWT is the instantaneous linear superposition of an (overall) right-propagating complex traveling plane wave and an (overall) left-propagating traveling plane wave:

$$
\tilde{p}(z, t)=\left[\tilde{A}(\tilde{k}) e^{-i \tilde{k}^{*} z}+\tilde{B}(\tilde{k}) e^{+i \tilde{k} z}\right] e^{+i \omega t}
$$

The overall instantaneous complex pressure amplitude is in fact a linear superposition of an infinite number of individual right- and left-moving complex traveling pressure waves with complex amplitudes $\tilde{a}_{n}(\tilde{k})$ and $\tilde{b}_{n}(\tilde{k}), n=0,1,2,3 \ldots \infty$ respectively, each of which are associated with the sine-wave signal output from the acoustical transducer (located at $z=0$ ) at times earlier than $t=0$. Thus, mathematically the complex amplitudes associated with right- and left-moving complex amplitudes can each be represented by the infinite series $\tilde{A}(\tilde{k})=\sum_{n=0}^{\infty} \tilde{a}_{n}(\tilde{k})$ and $\tilde{B}(\tilde{k})=\sum_{n=0}^{\infty} \tilde{b}_{n}(\tilde{k})$. Both of these series representations can be represented graphically via phasor diagrams in the complex plane, e.g. for $\tilde{A}(\tilde{k})=\sum_{n=0}^{\infty} \tilde{a}_{n}(\tilde{k})$ as shown in the figure below for $t=0$ :


Precisely on a resonance of the SWT, the individual complex amplitudes $\tilde{a}_{n}(\tilde{k})$ and $\tilde{b}_{n}(\tilde{k})$ associated with the individual right- and left-moving traveling waves respectively, are perfectly in phase with each other, i.e. all of the individual relative phases $\delta_{\tilde{a}_{n}}^{*}=2 n \pi=0, \delta_{\tilde{b}_{n}}^{*}=2 n \pi=0$ and thus the overall phases $\Delta_{\tilde{A}}^{*}=\sum_{n=0}^{\infty} \delta_{\tilde{a}_{n}}^{*}=0$ and $\Delta_{\tilde{B}}^{*}=\sum_{n=0}^{\infty} \delta_{\tilde{b}_{n}}^{*}=0$, graphically corresponding to "straight-line" phasor diagrams for $\tilde{A}(\tilde{k})=\sum_{n=0}^{\infty} \tilde{a}_{n}(\tilde{k})$ and $\tilde{B}(\tilde{k})=\sum_{n=0}^{\infty} \tilde{b}_{n}(\tilde{k})$.

Explicitly writing out the complex pressure amplitudes $\tilde{A}(\tilde{k})=\sum_{n=0}^{\infty} \tilde{a}_{n}(\tilde{k})$ and $\tilde{B}(\tilde{k})=\sum_{n=0}^{\infty} \tilde{b}_{n}(\tilde{k})$ associated with the overall right- and left-moving complex plane waves:

$$
\tilde{A}(\tilde{k})=A_{0} e^{-i \tilde{\delta}_{0}^{*}}+A_{0} e^{-i \tilde{\delta}_{1}^{*}}+A_{0} e^{-i \tilde{\delta}_{2}^{*}}+A_{0} e^{-i \tilde{\delta}_{3}^{*}}+\ldots=A_{0}\left[e^{-i \tilde{\delta}_{0}^{*}}+e^{-i \tilde{\delta}_{1}^{*}}+e^{-i \tilde{\delta}_{2}^{*}}+e^{-i \tilde{\delta}_{3}^{*}} \ldots\right]=A_{0} \sum_{n=0}^{\infty} e^{-i \tilde{\delta}_{n}^{*}}
$$

And:
$\tilde{B}(\tilde{k})=A_{o} e^{-i \tilde{\delta}_{0}^{*}}+A_{o} e^{-i \tilde{\delta}_{1}^{*}}+A_{o} e^{-i \tilde{\delta}_{2}^{*}}+A_{o} e^{-i \tilde{\delta}_{3}^{*}}+\ldots=A_{o}\left[e^{-i \tilde{\delta}_{0}^{*}}+e^{-i \tilde{\delta}_{1}^{*}}+e^{-i \tilde{\delta}_{2}^{*}}+e^{-i \tilde{\delta}_{3}^{*}} \ldots\right]=A_{o} \sum_{n=0}^{\infty} e^{-i \tilde{\delta}_{n}^{*}}=\tilde{A}(\tilde{k})$
The multiplicative phase factor $e^{-i \tilde{\delta}_{n}}$ associated with the $n^{\text {th }}$ term in each of the two infinite series arises from the fact that each such contributing wave had to originate at an earlier time, $t_{n}<0$ in order for all such waves to arrive simultaneously at the $z=z$ position at the time $t=t$. Note that since $e^{i o t}$ rotates complex quantities CCW in the complex plane as the time $t$ increases, the sign in the argument of the $e^{-i \tilde{\delta}_{n}^{*}}$ phase factor associated with waves arriving at the $z=z$ position at the time $t=t$ from the earlier time $t_{n}<0$ must be negative. Since the elapsed time for $n$ round trips of right- or left-moving waves propagating in the SWT is $\Delta t_{n} \equiv t-t_{n}=n(2 L) / v=2 n L / v$, then the complex phase shift associated with $n$ round trips of right- or left-moving waves propagating in the SWT is $\tilde{\delta}_{n}^{*}=\omega \Delta t_{n}=2 n L \omega / \tilde{v}=2 n \tilde{k}^{*} L$ and thus $e^{-i \delta_{n}^{*}}=e^{-2 i n \tilde{k}^{*} L}=e^{-2 i n(k-i \kappa) L}=e^{-2 \kappa L} e^{-2 i n k L}$.

Thus

$$
\tilde{A}(\tilde{k})=A_{0}+A_{0} e^{-2 \kappa L} e^{-2 i k L}+A_{0} e^{-4 \kappa L} e^{-4 i k L}+A_{0} e^{-6 \kappa L} e^{-6 i k L}+\ldots=A_{0} \sum_{n=0}^{\infty} e^{-2 n \kappa L} e^{-2 i n k L}=\tilde{B}(\tilde{k})
$$

Note that since the end walls of the SWT (located at $z=0$ and $z=L$ respectively) are assumed to be infinitely rigid, we have tacitly/implicitly assumed that no additional phase shift(s) of the right-/ left-moving traveling waves occurs upon reflection at the end walls. If such reflection-induced phase shifts were to occur, then additional phase factors $e^{-i n \varphi_{o}}$ and $e^{-i n \varphi_{L}}$ would need to be included in the above expressions in order to explicitly take into account/properly mathematically describe general/generic phase shifts associated with reflection of the individual right- and left-moving plane waves at \{non-perfectly rigid\} end-walls of the SWT.

Is it possible to obtain an analytic, closed-form expression for the infinite series associated with the complex amplitudes $\tilde{A}(\tilde{k})$ and $\tilde{B}(\tilde{k})$ ? The answer is a most definite yes!
Defining $t \equiv 2 \kappa L>0$ and $x \equiv 2 k L$, and noting that $\sum_{n=0}^{\infty} e^{-n t} e^{-i n x}=\sum_{n=0}^{\infty} e^{-n t} \cos n x-i \sum_{n=0}^{\infty} e^{-n t} \sin n x$ the analytic/closed-form expressions for the two $\infty$ series on the RHS of this relation, for $\underline{t>0}$ are ${ }^{[1]}$ :

$$
\sum_{n=0}^{\infty} e^{-n t} \sin n x=\frac{1}{2}\left(\frac{\sin x}{\cosh t-|\cos x|}\right) \text { and: } \sum_{n=0}^{\infty} e^{-n t} \cos n x=\frac{1}{2}\left(\frac{\sinh t}{\cosh t-\cos x}+1\right)
$$

Thus: $\sum_{n=0}^{\infty} e^{-n t} \cos n x-i \sum_{n=0}^{\infty} e^{-n t} \sin n x=\sum_{n=0}^{\infty} e^{-n t} e^{-i n x}=\frac{1}{2}\left[\left(\frac{\sinh t}{\cosh t-\cos x}+1\right)-i\left(\frac{\sin x}{\cosh t-|\cos x|}\right)\right]$
Hence the analytic/closed-form expression for complex $\tilde{A}(\tilde{k})=\tilde{B}(\tilde{k})$ is:

$$
\tilde{A}(\tilde{k})=\tilde{B}(\tilde{k})=A_{o}\left[\sum_{n=0}^{\infty} e^{-2 n \kappa L} e^{-2 i n k L}\right]=\frac{1}{2} A_{o}\left[\left(1+\frac{\sinh (2 \kappa L)}{\cosh (2 \kappa L)-\cos (2 k L)}\right)-i\left(\frac{\sin (2 k L)}{\cosh (2 \kappa L)-|\cos (2 k L)|}\right)\right]
$$

Thus, the overall instantaneous complex pressure amplitude $\tilde{p}(z, t)$ is:

$$
\begin{aligned}
\tilde{p}(z, t) & =\left[\tilde{A}(\tilde{k}) e^{-i \tilde{k}^{*} z}+\tilde{B}(\tilde{k}) e^{+i \tilde{k} z}\right] e^{+i \omega t}=\tilde{A}(\tilde{k})\left[e^{-i \hat{k}^{*} z}+e^{+i \tilde{i k z}}\right] e^{+i \omega t}=2 \tilde{A}(\tilde{k}) e^{-\kappa z} \cos (k z) e^{+i \omega t} \\
& =A_{o} e^{-\kappa z} \cos (k z)\left[\left(1+\frac{\sinh (2 \kappa L)}{\cosh (2 \kappa L)-\cos (2 k L)}\right)-i\left(\frac{\sin (2 k L)}{\cosh (2 \kappa L)-|\cos (2 k L)|}\right)\right] e^{+i \omega t}
\end{aligned}
$$

Note that the physics associated with standing plane acoustic waves inside a SWT is similar to that associated with standing plane electromagnetic/visible light waves inside a Fabry-Perot etalon with semi-transparent/partially-silvered and/or dielectric-coated plane-parallel mirrors!
Defining: $\tilde{\boldsymbol{z}}(\tilde{k}) \equiv\left[\left(1+\frac{\sinh (2 \kappa L)}{\cosh (2 \kappa L)-\cos (2 k L)}\right)-i\left(\frac{\sin (2 k L)}{\cosh (2 \kappa L)-|\cos (2 k L)|}\right)\right]$
Then $\tilde{p}(z, t)$ can be written as: $\tilde{p}(z, t)=A_{o} \tilde{z}(\tilde{k}) e^{-\kappa z} \cos (k z) e^{+i \omega t}$
The 1-D complex particle velocity is of the general form $\tilde{u}_{z}(z, t)=\tilde{u}_{o_{z}}(z) e^{+i o t}$ and is related to the complex pressure $\tilde{p}(z, t)$ via the 1-D Euler equation:

$$
-\rho_{o} \frac{\partial \tilde{u}_{z}(z, t)}{\partial t}=\frac{\partial \tilde{p}(z, t)}{\partial z}
$$

Thus: $\tilde{u}_{z}(z, t)=-i \frac{1}{\omega \rho_{o}} A_{0} \tilde{F}(\tilde{k}) e^{-\kappa z}[\kappa \cos k z+k \sin k z] e^{+i \omega t}$
Since $v(\omega)=\omega / k(\omega)$ this relation can also be written as:

$$
\tilde{u}_{z}(z, t)=-i \frac{1}{\rho_{o} v} A_{o} \tilde{\mathcal{F}}(\tilde{k}) e^{-\kappa z}\left[\left(\frac{\kappa}{k}\right) \cos k z+\sin k z\right] e^{+i \omega t}
$$

For inviscid fluid flow, note that $(\kappa / k) \ll 1$ or equivalently, that $\kappa \ll k$.

UIUC Physics 193POM/Physics 406POM The Physics of Music/Physics of Musical Instruments

The complex longitudinal particle displacement \{from its nominal equilibrium position\} $\tilde{\xi}(z, t)$ is related to the complex longitudinal particle velocity $\tilde{u}_{z}(z, t)$ via $\tilde{u}_{z}(z, t)=\partial \tilde{\xi}(z, t) / \partial t$.

Thus:

$$
\tilde{\xi}_{z}(z, t)=-\frac{1}{\omega \rho_{o} v} A_{o} \tilde{z}(\tilde{k}) e^{-\kappa z}\left[\left(\frac{\kappa}{k}\right) \cos k z+\sin k z\right] e^{+i \omega t}
$$

The complex specific acoustic longitudinal impedance $\tilde{z}(z)$ of the SWT tube at the position $z$ is defined as the ratio of complex pressure to complex longitudinal particle velocity:

$$
\tilde{z}(z) \equiv \frac{\tilde{p}(z, t)}{\tilde{u}_{z}(z, t)}=\frac{\tilde{p}(z) e^{+i \omega t}}{\tilde{u}_{z}(z) e^{+i \omega t}}=\frac{\tilde{p}(z)}{\tilde{u}_{z}(z)}=+i \rho_{o} v \frac{\cos k z}{\left[\left(\frac{\kappa}{k}\right) \cos k z+\sin k z\right]}
$$

Note that the complex specific acoustic impedance $\tilde{z}(z)$ of the SWT is purely imaginary, and is also a time-independent quantity, since $\tilde{p}(z, t)$ and $\tilde{u}_{z}(z, t)$ have the same time-dependence factor $e^{+i \omega t}$. The SI units of complex specific acoustic longitudinal impedance $\tilde{z}(z)$ are $P a-s / m=k g / s-m^{2}$, also known simply as acoustic ohms, also known as Rayls (in honor of Lord Rayleigh).

The 1-D complex longitudinal acoustic intensity $\tilde{I}_{z}(z)$ at the position $z$ is defined as:

$$
\tilde{I}_{z}(z) \equiv \frac{1}{2} \tilde{p}(z, t) \tilde{u}_{z}^{*}(z, t)=\frac{1}{2} \tilde{p}(z) \tilde{u}_{z}^{*}(z)=-i \frac{A_{o}^{2}}{2 \rho_{o} v}|\tilde{\mathcal{F}}(\tilde{k})|^{2} e^{-2 \kappa z} \cos (k z)\left[\left(\frac{\kappa}{k}\right) \cos k z+\sin k z\right]
$$

The complex longitudinal acoustic intensity $\tilde{I}_{z}(z)$ in the SWT is purely imaginary and is also a time-independent quantity. The SI units of complex acoustic intensity $\tilde{I}_{z}(z)$ are Watts $/ \mathrm{m}^{2}$.

The time-averaged total acoustic energy density $\left\langle w_{a}^{\text {tot }}(z)\right\rangle$ at the position $z$ is the additive sum of the individual time-averaged acoustic potential energy density $\left\langle w_{a}^{\text {potl }}(z)\right\rangle$ and the time-averaged acoustic kinetic energy density $\left\langle w_{a}^{\text {kin }}(z)\right\rangle$ :

$$
\left\langle w_{a}^{\text {tot }}(z)\right\rangle=\left\langle w_{a}^{\text {potl }}(z)\right\rangle+\left\langle w_{a}^{\text {kin }}(z)\right\rangle \equiv \frac{1}{4} \frac{|\tilde{p}(z, t)|^{2}}{\rho_{o} v^{2}}+\frac{1}{4} \rho_{o}\left|\tilde{u}_{z}(z, t)\right|^{2}=\frac{1}{4} \frac{|\tilde{p}(z)|^{2}}{\rho_{o} v^{2}}+\frac{1}{4} \rho_{o}\left|\tilde{u}_{z}(z)\right|^{2}
$$

The time-averaged energy densities are purely real, time-independent quantities. The SI units of energy density are Joules $/ m^{3}$.

Precisely at one of the resonant frequencies of the SWT $f_{n}=v / \lambda_{n}=n v / 2 L$, with both of the $p$ and $u_{z}$ mics located e.g. at $z=L$, then $k_{n} L=2 \pi L / \lambda_{n}=n \pi$, and hence $\cos \left(k_{n} L\right)=\cos (n \pi)=(-1)^{n}$, $\cos \left(2 k_{n} L\right)=\cos (2 n \pi)=1, \sin \left(k_{n} L\right)=\sin (n \pi)=0$ and $\sin \left(2 k_{n} L\right)=\sin (2 n \pi)=0$ and thus the instantaneous overall complex pressure amplitude at $z=L$ on the $n^{\text {th }}$ resonance of the SWT becomes:

$$
\tilde{p}_{n}(z=L, t)=(-1)^{n} A_{o} e^{-\kappa L}\left(\frac{\sinh (2 \kappa L)}{\cosh (2 \kappa L)-1}+1\right) e^{+i \omega_{n} t}
$$

Now since $\operatorname{coth} x=\frac{1}{\tanh x}=\frac{\cosh x}{\sinh x}$ and using the fact that ${ }^{[2]} \tanh \left(\frac{1}{2} x\right)=\frac{\cosh x-1}{\sinh x}$, then we see that $\operatorname{coth}\left(\frac{1}{2} x\right)=\frac{1}{\tanh \left(\frac{1}{2} x\right)}=\frac{\sinh x}{\cosh x-1}$ and thus if $x=2 \kappa L$ we see that the above expression for $\tilde{p}_{n}(z=L, t)$ on the SWT resonances can equivalently be written as:

$$
\tilde{p}_{n}(z=L, t)=(-1)^{n} A_{o} e^{-\kappa L}[\operatorname{coth}(\kappa L)+1] e^{+i \omega_{n} t}
$$

Thus, we see that there are pressure anti-nodes at both $z=0$ and $z=L$ on the resonances of the SWT for infinitely rigid/closed end walls.

The instantaneous 1-D longitudinal particle velocity at $z=L$ on the resonances of the SWT is:

$$
\tilde{u}_{z_{n}}(z=L, t)=-i \frac{(-1)^{n}}{\rho_{o} v} A_{o} e^{-\kappa L}\left(\frac{\kappa}{k_{n}}\right)\left(\frac{\sinh (2 \kappa L)}{\cosh (2 \kappa L)-1}+1\right) e^{+i \omega_{n} t}
$$

Again, using the relation $\operatorname{coth}\left(\frac{1}{2} x\right)=\frac{1}{\tanh \left(\frac{1}{2} x\right)}=\frac{\sinh x}{\cosh x-1}$ the longitudinal particle velocity at $z=L$ on one of the resonances of the SWT can be rewritten as:

$$
\tilde{u}_{z_{n}}(z=L, t)=-i \frac{(-1)^{n}}{\rho_{o} v} A_{o} e^{-\kappa L}\left(\frac{\kappa}{k_{n}}\right)[\operatorname{coth}(\kappa L)+1] e^{+i \omega_{n} t}
$$

Note that on a resonance of the SWT, $\tilde{u}_{z_{n}}(z=L, t)$ is $-90^{\circ}$ out-of-phase relative to $\tilde{p}_{n}(z=L, t)$.

The instantaneous 1-D longitudinal particle displacement at $z=L$ on a resonance of the SWT is:

$$
\tilde{\xi}_{z_{n}}(z=L, t)=-\frac{(-1)^{n}}{\omega_{n} \rho_{o} v} A_{o} e^{-\kappa L}\left(\frac{\kappa}{k_{n}}\right)\left\{\left(\frac{\sinh (2 \kappa L)}{\cosh (2 \kappa L)-1}+1\right)\right\} e^{+i \omega_{n} t}
$$

Again, using the relation $\operatorname{coth}\left(\frac{1}{2} x\right)=\frac{1}{\tanh \left(\frac{1}{2} x\right)}=\frac{\sinh x}{\cosh x-1}$ the longitudinal particle displacement at $z=L$ on one of the resonances of the SWT can be rewritten as:

$$
\tilde{\xi}_{z_{n}}(z=L, t)=-\frac{(-1)^{n}}{\omega_{n} \rho_{o}} A_{o} e^{-\kappa L}\left(\frac{\kappa}{k_{n}}\right)(\operatorname{coth}(\kappa L)+1) e^{+i \omega_{n} t}
$$

Thus we see that on the resonances of the SWT, $\tilde{\xi}_{z_{n}}(z=L, t)$ is $-90^{\circ}$ out of phase relative to $\tilde{u}_{z_{n}}(z=L, t)$ and is $-180^{\circ}$ out of phase relative to $\tilde{p}_{n}(z=L, t)$.

In terms of a phasor diagram, the complex pressure $\tilde{p}_{n}(z=L, t)$, complex longitudinal particle velocity $\tilde{u}_{z_{n}}(z=L, t)$ and complex longitudinal displacement $\tilde{\xi}_{n}(z=L, t)$ on the resonances of the SWT as observed at $z=L$ and at time $t=0$ are oriented as shown in the figure below:


The complex specific longitudinal acoustic impedance at $z=L$ on the resonances of the SWT is purely imaginary and time-independent:

$$
z_{n}(z=L) \equiv \frac{\tilde{p}_{n}(z=L, t)}{\tilde{u}_{z_{n}}(z=L, t)}=+i \rho_{o} v\left(\frac{k_{n}}{\kappa}\right)
$$

The complex longitudinal intensity at $z=L$ on the resonances of the SWT is also purely imaginary and time-independent:

$$
\tilde{I}_{z_{n}}(z=L) \equiv \frac{1}{2} \tilde{p}_{n}(z=L) \tilde{u}_{z_{n}}^{*}(z=L)=+i \frac{A_{o}^{2}}{2 \rho_{o} v} e^{-2 \kappa L}\left(\frac{\kappa}{k_{n}}\right)[\operatorname{coth}(\kappa L)+1]^{2}
$$

UIUC Physics 193POM/Physics 406POM The Physics of Music/Physics of Musical Instruments

Note that since there are acoustic standing waves present in the SWT, the complex longitudinal sound intensity $\tilde{I}_{z}(z) \underline{\text { must }}$ be purely reactive (i.e. purely imaginary). A non-zero value associated with the real component of $\tilde{I}_{z}(z)$ is due to an actual \{time-averaged\} flux, or flow of energy down the SWT - this cannot be due to a standing wave - only a traveling sound wave can have this!

The time-averaged total energy density at the position $z=L$ on a resonance of the SWT is:

$$
\begin{aligned}
&\left\langle w_{a_{n}}^{\text {tot }}(z=L)\right\rangle \equiv\left\langle w_{a_{n}}^{\text {potl }}(z=L)\right\rangle+\left\langle w_{a_{n}}^{\text {kin }}(z=L)\right\rangle=\frac{1}{4} \frac{\left|\tilde{p}_{n}(z=L, t)\right|^{2}}{\rho_{o} v^{2}}+\frac{1}{4} \rho_{o}\left|\tilde{u}_{z_{n}}(z=L, t)\right|^{2} \\
&=\frac{1}{4} \frac{A_{o}^{2}}{\rho_{o} v^{2}} e^{-2 \kappa L}[\operatorname{coth}(\kappa L)+1]^{2}+\frac{1}{4} \frac{A_{o}^{2}}{\rho_{o} v^{2}} e^{-2 \kappa L}\left(\frac{\kappa}{k_{n}}\right)^{2}[\operatorname{coth}(\kappa L)+1]^{2} \\
& \text { Or: } \quad\left\langle w_{a_{n}}^{\text {tot }}(z=L)\right\rangle \equiv\left\langle w_{a_{n}}^{\text {potl }}(z=L)\right\rangle+\left\langle w_{a_{n}}^{\text {kin }}(z=L)\right\rangle=\frac{1}{4} \frac{A_{o}^{2}}{\rho_{o} v^{2}} e^{-2 \kappa L}\left[1+\left(\frac{\kappa}{k_{n}}\right)^{2}\right][\operatorname{coth}(\kappa L)+1]^{2}
\end{aligned}
$$

Note that since $\left(\kappa / k_{n}\right) \ll 1$ for inviscid fluid flow, on the resonances of the SWT we see that $\left\langle w_{a_{n}}^{\text {potl }}(z=L)\right\rangle \gg\left\langle w_{a_{n}}^{\text {kin }}(z=L)\right\rangle$.

## References:

[1] Table of Integrals, Series and Products, I.S. Gradshteyn and I.M. Ryzhik, page 42, Academic Press, Inc. 1980.
In this reference, please note that the expression $\sum_{n=0}^{\infty} e^{-n t} \sin n x=\left(\frac{\sin x}{\cosh t-\cos x}\right)$ is factually
in error in the $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrants (where $\cos x<0$ ). The correct expression, valid in all four quadrants is:

$$
\sum_{n=0}^{\infty} e^{-n t} \sin n x=\left(\frac{\sin x}{\cosh t-|\cos x|}\right)
$$

[2] ibid, page 25.

