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Two-Point Sound Field Relationships: ( )1,S r t vs. ( )2 ,S r t  
 

Introduction 
 

     At a given space-time point ( ),r t  an arbitrary complex sound field ( ) ( ) ( ){ }, , , ,S r t p r t u r t=  is 
completely/fully specified by making two physical measurements at that space-time point:  
the instantaneous complex acoustic pressure ( ),p r t  {n.b. a scalar quantity} and the instantaneous 

complex three-dimensional acoustic particle velocity ( ),u r t  {n.b. a vector quantity}. At the common 

space-time point ( ),r t  these two physical quantities are related to each other via the Euler equation for 
inviscid fluid flow (i.e. fluids – liquids and/or gases where dissipative forces are assumed to always be 
small in comparison to inertial forces): 
 

( ) ( ),
,o

u r t
p r t

t
ρ

∂
− = ∇

∂
 

 

     The quantity oρ is the {equilibrium} mass volume density of the fluid, which for {bone-dry} air at 
NTP is 31.204o kg mρ = . In SI units, the complex pressure ( ),p r t is measured in Pascals  

(1 Pa = 1 N/m2 = 1 kg-m/s2), the complex particle velocity ( ),u r t is measured in units of m/s. 
 
     Usually, e.g. for a musical instrument such as the trumpet, we are interested in physical 
measurements of the complex acoustic sound field ( ),S r t at the input and output side of the trumpet 
associated with notes being played on the musical instrument, which manifestly involves the 
production (and propagation) of plane-type sound waves, where the amplitudes of the complex 
instantaneous pressure and particle velocity each have constant values everywhere on a given planar 
wavefront. Thus, the Euler equation describing the relationship between complex instantaneous 
pressure and particle velocity reduces to a 1-dimensional, rather than 3-dimensional problem for plane 
wave propagation, i.e.  

( ) ( ), ,x
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u x t p x t
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ρ
∂ ∂

− =
∂ ∂

 
 

where ( ),xu x t is the longitudinal component of the complex instantaneous particle velocity, 
i.e. parallel to/along the symmetry axis of the pipe/musical instrument. 
 

Applications of the Four-Terminal Matrix Method in Complex Sound Field Analysis 
 

     A question that frequently arises is how do we relate the sound field ( ) ( ) ( ){ }1 1 1, , , ,S r t p r t u r t=  at a 

given space-time point ( )1,r t to another sound field ( ) ( ) ( ){ }2 2 2, , , ,S r t p r t u r t= at the space-time point 

( )2 ,r t  that have a common sound source? There are various methods that can be used to accomplish this 
task. One method is to integrate the Euler equation both in space and (backwards) in time, which can be 
done correctly only if the detailed 3-D geometry is fully specified everywhere along the actual path 
taken by the propagation of sound waves from the point 1r  to the point 2r . Another approach is to use 
the methodology, appropriately modified, associated with the four-terminal method used in complex 
electrical network analysis, as discussed in Appendix 1. 
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    For sound propagation in a confined, infinitely rigid structure such as a pipe, or a musical 
instrument such as a trumpet, the complex instantaneous pressure and particle velocity at one end of 
the pipe/musical instrument, ( )1,p r t and ( )1,u r t with cross sectional area 1S can be related to the 

complex instantaneous pressure and particle velocity ( )2 ,p r t and ( )2 ,u r t with cross sectional area 2S at 
the other end of the pipe/musical instrument using a mathematical technique developed for 
applications in analyzing electrical networks. The physical situation is shown in the figure below: 

 
     If the physical length L of the pipe/musical instrument is such that 1kL , where the wavenumber 

2k π λ=  and v fλ = , and where the speed of sound v in {bone-dry} air at NTP is 345v m s , then 
use of the so-called four-terminal method is valid in this situation. The complex instantaneous pressure 
and particle velocity ( ) ( )1 0,p t p x t≡ = and ( ) ( )1 0,u t u x t≡ = at the “input” side of the structure at 

0x = are different/decoupled from the complex instantaneous pressure and particle velocity 
( ) ( )2 ,p t p x L t≡ = and ( ) ( )2 ,u t u x L t≡ = at the “output” side of the structure at x L= . For example, 

for a Bb trumpet, with nominal tube length 1.47 L m , the lowest note (other than the pedal note) is 
C4, i.e. 4 261.63 Cf Hz= which corresponds to a {free-air} wavelength of 

4 4 345 / 261.63 1.32 C Cv f mλ = =  {n.b. it is not an accident that 4Cλ is comparable to the tube length 
L of the trumpet}. Thus we see that the criterion ( ) ( )4 42 6.28 1.32 1.47 7.00 1C Ck L Lπ λ= =  is 
certainly satisfied for all normally-played notes of the trumpet. This is also true for other musical 
instruments in the “classic” brass/wind family. 
 
     Before launching into a discussion of applying the four-terminal network approach to this acoustics 
problem, we must first discuss a couple of issues. The complex specific acoustic impedance ( )z x at a 

given point, x is defined as the ratio of the complex pressure ( )p x to the complex particle velocity 

( )u x at that point, i.e.:  

Complex specific acoustic impedance: ( ) ( )
( )

( )
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( )
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Note that the complex specific acoustic impedance ( )z x  is a time-independent quantity. 
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     The SI units of complex specific acoustic impedance ( ) ( ) ( )z x p x u x=  are 

23- - -Pa s m N s m kg s m= = , or simply acoustic Ohms, i.e. 1 - 1 acPa s m = Ω , in direct analogy to the 

complex form of Ohms law for AC circuits, where the electrical AC impedance, ( ) ( ) ( )Z x V x I x≡ , 
also a time-independent quantity. 
 
     The so-called complex acoustic impedance ( )Z x at a given point, x is defined as the ratio of the 

complex pressure ( )p x to the complex volume velocity ( )U x at that point, i.e.:  
 

Complex acoustic impedance: ( ) ( )
( )

( )
( )

( )
( )

,
,

i t

i t
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Z x

U x t U x e U x

ω

ω

−

−≡ = =  

 

where the complex instantaneous volume velocity ( ),U x t is related to the complex instantaneous 

particle velocity ( ),u x t by ( ) ( ) ( ), ,U x t S x u x t=  where ( )S x is the cross sectional area (in m2) of the 

pipe/musical instrument at the point x.  Thus, the complex acoustic impedance ( )Z x  at a given point, 
x can also be written as: 
  

Complex acoustic impedance: ( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( ) ( ) ( ), 1

,

i t

i t

p x t p x e p x p x
Z x z x

U x t U x e U x S x u x S x

ω

ω

−

−≡ = = = =  

 

Note that the complex acoustic impedance ( )Z x  is also a time-independent quantity. 
 
     The SI units of complex acoustic impedance ( ) ( ) ( )Z x p x U x=  are 

43 5- - -Pa s m N s m kg s m= = , also known as Rayls (in honor of Lord Rayleigh, for his theoretical 
work in acoustical physics in the 19th century), i.e. 31 - 1 Pa s m Rayl= , again in direct analogy to the 
complex form of Ohms law for AC circuits, where the complex AC electrical impedance, 
( ) ( ) ( )Z x V x I x≡  (also a time-independent quantity) 

 
     Since the SI units of complex particle velocity ( )u x  are m s , the SI units of complex volume 

velocity ( ) ( ) ( ), ,U x t S x u x t=  are 3m s , which is precisely why ( ),U x t is called the volume 

velocity. Multiplying the complex instantaneous volume velocity ( ),U x t by the equilibrium mass 

volume density 31.204o kg mρ = for {bone-dry} air at NTP gives the complex instantaneous mass flow  

( ) ( ) ( ) ( ), , ,o oM x t U x t S x u x tρ ρ= =  which has SI units of kg s , i.e. the complex mass flow is in fact 
a complex mass current, and as such it is directly analogous to the complex instantaneous AC 
electrical current ( ),I x t , which has SI units of Coulombs s Amperes= .  Note also that the complex 

instantaneous pressure ( ),p x t is directly analogous to the complex instantaneous AC electrical 

voltage (i.e. potential difference) ( ),V x t . 
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     Following the methodology described in Appendix 1 for the four-terminal network in complex AC 
electronic circuit analysis, the instantaneous complex pressure ( ) ( )1 0,p t p x t≡ =  and volume velocity 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 10, 0, 0, 0,U t U x t S x t u x t S u x t S u t≡ = = = = = = = at the “input” side of the acoustic 

structure at 0x = can be related to the complex instantaneous pressure ( ) ( )2 ,p t p x L t≡ = and volume 

velocity ( ) ( ) ( ) ( ) ( ) ( )2 2 2 1, , , ,U t U x L t S x L t u x L t S u x L t S u t≡ = = = = = = = at the “output” side of 

the acoustic structure at x L=  via the complex matrix equation =P U which is of the form: 
 

( )
( )

( )
( )

1 111 12

2 221 22

p t U tZ Z
p t U tZ Z

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
Explicitly writing this relation out as two separate (but coupled) equations: 
 

( ) ( ) ( )
( ) ( ) ( )

1 11 1 12 2

2 21 1 22 2

p t Z U t Z U t

p t Z U t Z U t

= +

= +
 

 

     Mathematically speaking, if all four complex instantaneous pressures and volume velocities, ( )1p t , 

( )2p t , ( )1U t and ( )2U t are measured/known, since we have two equations and four unknowns 

( )11 12 21 22, , ,Z Z Z Z associated with the two coupled complex relations 
 

 
( ) ( ) ( )
( ) ( ) ( )

1 11 1 12 2

2 21 1 22 2

p t Z U t Z U t

p t Z U t Z U t

= +

= +
 

 
then we do not have enough relations to completely/uniquely solve for the Zij elements of the complex 

matrix. However, due to the Reciprocity Theorem (in which the roles of the input and output of the 
acoustic structure are reversed),  the off-diagonal elements of the complex matrix must be equal to 
each other, i.e. 12 21Z Z= , and thus we actually have only three unknowns ( )11 12 21 22, ,Z Z Z Z= . Note 

also that in general 11 22Z Z≠ , unless the geometry of the acoustic structure is such that it has manifest 
input-output reflection symmetry about its mid-point at 2x L= . Note further that the microscopic 
origin of the Reciprocity Theorem is intimately associated with the manifest time-reversal invariant 
nature of the electromagnetic interaction at the particle-physics level – i.e. the interaction between 
electrical charges via the exchange of virtual photons – the quanta/mediators of the electromagnetic 
force, which is intimately involved in the collisions/scatterings of gas molecules within the acoustic 
fluid – the air! 
 
Thus, the relations for the complex matrix become (suppressing the common time dependence for 
notational clarity): 
 

1 11 12 1

2 12 22 2

p Z Z U
p Z Z U

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
  and/or:  1 11 1 12 2

2 12 1 22 2

p Z U Z U
p Z U Z U
= +
= +

 

 

We also have the (auxiliary) relations for input and output impedances: 1 1 1p Z U= and 2 2 2p Z U= . 
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Thus: 

1 1 1 11 1 12 2

2 2 2 12 1 22 2

p Z U Z U Z U
p Z U Z U Z U
= = +
= = +

 

Rewriting these as: 
( )
( )

1 11 1 12 2

2 22 2 12 1

Z Z U Z U

Z Z U Z U

− =

− =
   or:   

( )
( )

1 11 1 12 2

12 1 2 22 2

Z Z U Z U

Z U Z Z U

− =

= −
 

Dividing the two LHS equations (and eliminating 12Z ) we see that:   
( )
( )

2
1 11 2

2 22 1

Z Z U
Z Z U

− ⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

. 

Dividing the two RHS equations (eliminating the U’s) we see that: 
( )

( )
1 11 12

12 2 22

Z Z Z
Z Z Z
−

=
−

 

i.e. ( )( )2
12 1 11 2 22Z Z Z Z Z= − − , which can be rewritten either as       

( )
2

12
11 1

2 22

ZZ Z
Z Z

= −
−

  

or as 
( )

2
12

22 2
1 11

ZZ Z
Z Z

= −
−

.  The LHS equations can be rewritten again in the following form: 

( )
( )

11 1 12 2 1

22 2 12 1 2

Z Z Z U U

Z Z Z U U

= −

= −
 

 

From the relationship ( ) ( ) ( )2
1 11 2 22 2 1Z Z Z Z U U− − =  we can also rewrite this as:  

 

( )( ) ( )( )
( )( ) ( )( )

2 2
11 1 2 22 2 1 1 22 2 2 1

2 2
22 2 1 11 1 2 2 11 1 1 2

Z Z Z Z U U Z Z Z U U

Z Z Z Z U U Z Z Z U U

= − − = + −

= − − = + −
 

 
This is about as far as we can go in terms of obtaining useful relations using only the two coupled 
equations of the complex matrix relation. 
 
     In order to uniquely determine/specify all four of the Zij elements of the complex matrix, one 
additional relation is needed. The relation we will use is associated with energy/energy density {n.b. 
which are both manifest scalar quantities}. The time-averaged energy density stored in the pressure 
and particle velocity of a complex sound field is: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 *

2 *
2 2

, , ,1 1 1 1, , ,
4 4 4 4tot potl kin o o

o o

p x t p x t p x t
e z e z e z u x t u x t u x t

v v
ρ ρ

ρ ρ
≡ + = + = +  

 

where * denotes complex conjugation, i.e. if A a iα= + then *A a iα= − where 1i ≡ − and 1i− ≡ − − . 
The SI units of energy density e are Joules/m3. 
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     From the above complex matrix relation =P U , we can form quantities such as ( ) 2

,p x t by 

taking the complex transpose ( )*T *T *T= =*TP U U and then multiplying =P U  on the 
left by its complex transpose, i.e.: 
 

( )( ) ( )*T *T *T *T= =*TP P U U U U  
 
In matrix form, this is explicitly (again suppressing the time-dependence for notational clarity): 
 

( ) ( ) ( )* * * * * ** * * *
1 2 1 2 1 21 11 12 1 11 12 111 21 11 12

* * * *
2 21 22 2 12 22 212 22 12 22

p p U U U Up Z Z U Z Z UZ Z Z Z
p Z Z U Z Z UZ Z Z Z

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
Carrying out the matrix operations in stages we obtain: 
 

( ) ( )* * * * * * * * * *
1 2 11 1 12 2 12 1 22 21 11 1 12 2

2 12 1 22 2

p p Z U Z U Z U Z Up Z U Z U
p Z U Z U

+ + +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 

Or: 

( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
1 2 11 12 1 12 22 2

* * * * * *
11 12 12 22 1 2 11 12 12 22 1 2             

p p Z Z U Z Z U

Z Z Z Z U U Z Z Z Z U U

+ = + + +

+ + + +
 

But 1 1 1p Z U=  and 2 2 2p Z U= , thus: 
 

( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2 2
1 1 2 2 11 12 1 12 22 2

* * * * * *
11 12 12 22 1 2 11 12 12 22 1 2                            

Z U Z U Z Z U Z Z U

Z Z Z Z U U Z Z Z Z U U

+ = + + +

+ + + +
 

 
     Before mindlessly/brute-force solving this relation, it is very useful to note that physically, energies 
and/or energy densities are additive scalar quantities, i.e. that ( ) ( )1 20 ...tote e x e x L= = + = +  
More specifically, the additive nature of energy/energy density means that no interference/no cross-
terms involving quantities such as ( ) ( )*

1 20, ,U x t U x L t= = and/or ( ) ( )*
1 20, ,U x t U x L t= = as in the 

above relation are allowed, for if they did exist, this would imply instantaneous/non-local/faster-than-
light propagation/transfer of energy, e.g. from the point 0x =  to the point x L=  (or vice-versa), 
which would be acausal, a phenomenon which is not observed in our universe. Information cannot 
propagate faster than the speed of light, c. Hence any/all such cross terms in energy/energy density 
formulae are strictly forbidden. In our current situation, this explicitly means that:  
 

( ) ( ) ( ) ( ) ( ) ( )* * * * * *
11 12 12 22 1 1 2 2 11 12 12 22 1 1 2 2, , , , 0Z Z Z Z U r t U r t Z Z Z Z U r t U r t+ + + =  

and thus: 

( ){ } ( ) ( ){ } ( )2 22 2 2 2 2 2
1 11 12 1 1 2 12 22 2 2, , 0Z Z Z U r t Z Z Z U r t− + + − + =  
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     Solving either of these equations, in addition to using the two coupled equations of the complex 

matrix relation and the use of the Reciprocity Theorem, in combination with explicit measurements 
of at least two of the four experimentally observable quantities ( )1p t , ( )2p t , ( )1U t and ( )2U t {n.b. at 
least one measurement must be on the “input” side and at least one measurement must be on the 
“output” side of the acoustic structure} and the use of the auxiliary relations 1 1 1p Z U=  and 2 2 2p Z U=  
enables us to fully/uniquely determine all four of the Zij elements of the complex matrix. 
 
     Note also from the immediately above equation, it might be tempting to believe that  

2 2 2
1 11 12Z Z Z= +  and hence also that 2 2 2

2 12 22Z Z Z= +  (invoking the Reciprocity Theorem), 
which would certainly satisfy this equation; however, explicit/brute-force calculations show this is not 
the case/is not true. The reason is simple, because we have already previously obtained the following 
relations from the two coupled equations of the complex matrix equation: 
 

( )
( )

11 1 12 2 1

22 2 12 1 2

Z Z Z U U

Z Z Z U U

= −

= −
  or: 

( )
( )

1 11 12 2 1

2 22 12 1 2

Z Z Z U U

Z Z Z U U

= +

= +
  ⇒   

( )

( )

22
1 11 12 2 1

22
2 22 12 1 2

Z Z Z U U

Z Z Z U U

= +

= +
 

 
     Skipping much tedious complex algebra, we simply quote the result of using either of the above 
two “energy / energy density” relations and all the other relations, enabling us to express e.g. 12Z  in 
terms of the four explicitly measured experimental quantities ( )1p t , ( )2p t , ( )1U t and ( )2U t : 
 

* *
1 2 2 1

12 212 2
1 2

p U p UZ Z
U U

+
= =

+
 

 

Note the manifest symmetry in the above expression under the interchange of 1 2 indices, which 
arises as an explicit consequence of the Reciprocity Theorem, i.e. requiring 12 21Z Z= . 
 
     Once 12Z has been determined, the other two elements of the complex matrix can be determined 
e.g. by using the relations: 

( )
( )

11 1 12 2 1

22 2 12 1 2

Z Z Z U U

Z Z Z U U

= −

= −
 

 

where the complex input and output acoustic impedances are 1 1 1Z p U=  and 2 2 2Z p U= , 
respectively 
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The Relationship Between the Four-Terminal Matrix Equation and Transfer Matrix Equation 

 
The complex matrix equation =P U obtained via the four-terminal method individually relates 
complex instantaneous pressures at two different points in space to the acoustic volume velocities at 
those points via this equation. More explicitly:  
 

( )
( )

( )
( )

1 1 1 111 12

2 2 2 212 22

, ,
, ,

p x t U x tZ Z
p x t U x tZ Z

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

  or:  
( ) ( ) ( )
( ) ( ) ( )

1 1 11 1 1 12 2 2

2 2 12 1 1 22 2 2

, , ,

, , ,

p x t Z U x t Z U x t

p x t Z U x t Z U x t

= +

= +
 

 
Perhaps physically more intuitive/meaningful is the equivalent relation, known as the transfer matrix 
equation 2 1=S TS relating two complex sound fields 1S and 2S via the complexT matrix, where:  
 

( )
( )

( )
( )

2 2 1 111 12

2 2 1 121 22

, ,
, ,

p x t p x tT T
U x t U x tT T
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

  or:  
( ) ( ) ( )
( ) ( ) ( )

2 1 11 1 1 12 1 2

2 2 21 1 1 22 1 2

, , ,

, , ,

p x t T p x t T U x t

U x t T p x t T U x t

= +

= +
 

 

The question arises, how is the complex transfer ( )T matrix equation 2 1=S TS  related to the 

complex matrix equation =P U ?  Starting with the two matrix equations: 
 

1 11 1 12 2

2 12 1 22 2

p Z U Z U
p Z U Z U
= +
= +

 

 

Multiply the first equation by ( )22 12Z Z : ( ) ( )22 12 1 22 11 12 1 22 2Z Z p Z Z Z U Z U= + .  
Subtract this equation from the 2nd equation above, eliminating 2U to obtain: 
 

( ) ( )2 22 12 1 12 22 11 12 1p Z Z p Z Z Z Z U− = −⎡ ⎤⎣ ⎦    or:   ( ) ( )2 22 12 1 12 11 22 12 1p Z Z p Z Z Z Z U= + −⎡ ⎤⎣ ⎦ . 
 

Next, simply rewrite the first equation above as: 12 2 1 11 1Z U p Z U= −  or:  ( ) ( )2 12 1 11 12 11U Z p Z Z U= − . 
 
Thus, we have the following pair of coupled equations: 
 

( ) ( )
( ) ( )

2
2 22 12 1 12 11 22 12 1

2 12 1 11 12 1    1                    

p Z Z p Z Z Z Z U

U Z p Z Z U

⎡ ⎤= + −⎣ ⎦
= −

   or:   
2

22 12 12 11 22 122 1

2 112 11 121

Z Z Z Z Z Zp p
U UZ Z Z

⎛ ⎞⎡ ⎤− ⎛ ⎞⎛ ⎞ ⎣ ⎦= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 

Thus, we see that the complex transfer matrix equation 2 1=S TS relating two sound fields:  
 

2 11 12 1

2 21 22 1

p T T p
U T T U
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 or: 
2 2

22 12 12 11 22 12 22 12 11 222 1 1

2 1 11212 11 12 11

1
1 1

Z Z Z Z Z Z Z Z Z Zp p p
U U UZZ Z Z Z

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎣ ⎦ ⎣ ⎦= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 

2 11 1 12 1

2 21 1 22 1

p T p T U
U T p T U

= +
= +

 or: 
( ) ( )
( ) ( )

2
2 22 12 1 12 11 22 12 1

2 12 1 11 12 1     1                    

p Z Z p Z Z Z Z U

U Z p Z Z U

⎡ ⎤= + −⎣ ⎦
= −

 

 



UIUC Physics 199POM/Physics 498POM The Physics of Music/Physics of Musical Instruments 

 
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 

2007 - 2008. All rights reserved. 

-9-

 
Thus, we see that the ijT elements of the complex transfer matrix T  are: 
 

( )
( ) ( )

2
11 22 12 12 12 11 22 12

21 12 22 11 121

T Z Z T Z Z Z Z

T Z T Z Z

⎡ ⎤= = −⎣ ⎦
= = −

 where: 
* *

1 2 2 1
12 212 2

1 2

p U p UZ Z
U U

+
= =

+
 and: 

( )
( )

11 1 12 2 1

22 2 12 1 2

Z Z Z U U

Z Z Z U U

= −

= −
.  

 

     Note that while the complex matrix has 12 21Z Z= , in contrast, the complex transfer matrix T  
manifestly has 12 21T T≠ since the off-diagonal elements do not/can not have the same physical SI units, 

i.e. 2
12 12 11 22 12T Z Z Z Z⎡ ⎤= −⎣ ⎦ whereas ( )21 121T Z= . The diagonal elements 11T and 22T are dimensionless. 

 
Appendix 1: 

 
The Four-Terminal Method As Used In Complex AC Electrical Network Analysis 

 
     In electrical network theory, complex instantaneous voltages and currents at the “input” and 
“output” sides of an arbitrary, i.e. “black-box” four-terminal network circuit as shown in the figure 
below 

 

are related to each other via the complex matrix equation =V I which is of the form: 
 

( )
( )

( )
( )

1 111 12

2 221 22

V t I tZ Z
V t I tZ Z
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
Explicitly writing this relation out as two separate (but coupled) equations: 
 

( ) ( ) ( )
( ) ( ) ( )

1 11 1 12 2

2 21 1 22 2

V t Z I t Z I t

V t Z I t Z I t

= +

= +
 

 
     Note that the four Zij elements of the complex matrix have SI units of that for impedance, Z i.e. 
Ohms (= Volts/Ampere), since the complex form of Ohm’s law is ( ) ( ) V t Z I t= . Note also that for a 

given load impedance ( ) ( )2 2 2Z V t I t=  attached to the “output” side of the four-terminal network 

circuit, the input impedance ( ) ( )1 1 1Z V t I t= , as viewed from the “input” side of the four-terminal 
network circuit can also be obtained using the above complex matrix relation.  
 
 
 
 
 
 

( )1I t  ( )2I t  ( )1V t  ( )2V t  

+  +

−  −

11 12

21 22

Z Z
Z Z
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠
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     The detailed nature of the electrical network contained inside the “black box” may be explicitly 
known a priori, such as e.g. a passive AC filter network (consisting e.g. of resistors with resistances 
Ri, capacitors with capacitances Cj and inductors with inductances Lk); the “black box” could also e.g. 
be a transformer, with a primary winding of N1 turns on the input side and a secondary winding of N2 
turns on the output side. However, the electrical components contained within the “black box” may be 
completely unknown, and thus in this case, it would truly be a black box. In this situation, if we 
physically measure each of the four complex instantaneous voltages and currents, ( )1V t , ( )2V t , 

( )1I t and ( )2I t then from the above complex matrix relation, we should be able to explicitly / 
quantitatively determine all four of the elements Zij of the complex matrix. Note however, that if the 
“black box” contains any reactive electrical components (i.e. capacitors and/or inductors), this analysis 
method only works for finite frequencies (i.e. f > 0); formally it fails in situations where f = 0 (when 
capacitive/inductive reactances are infinite/zero, respectively); thus since v fλ = , if  f = 0 
thenλ = ∞ and also the wavenumber 2 2 0k π λ π= = ∞ = for f = 0. 
 
     Mathematically speaking, if all four complex instantaneous voltages and currents, ( )1V t , ( )2V t , 

( )1I t and ( )2I t are measured/known, since we have two equations and four unknowns 

( )11 12 21 22, , ,Z Z Z Z associated with the two coupled complex relations 
 

 
( ) ( ) ( )
( ) ( ) ( )

1 11 1 12 2

2 21 1 22 2

V t Z I t Z I t

V t Z I t Z I t

= +

= +
 

 
then we do not have enough relations to completely/uniquely solve for the Zij elements of the complex 

matrix. However, due to the Reciprocity Theorem (in which the roles of the input and output of the 
4-terminal network are reversed),  the off-diagonal elements of the complex matrix must be equal to 
each other, i.e. 12 21Z Z= , and thus we actually have only three unknowns ( )11 12 21 22, ,Z Z Z Z= . Note 

also that in general 11 22Z Z≠ , unless the innards of the four-terminal “black-box” network is such that 
it has manifest input-output reflection symmetry. Note further that the microscopic origin of the 
Reciprocity Theorem is intimately associated with the manifest time-reversal invariant nature of the 
electromagnetic interaction at the particle-physics level – i.e. the interaction between electrical charges 
via the exchange of virtual photons – the quanta/mediators of the electromagnetic force. 
 
Thus, the relations for the complex matrix become (suppressing the common time dependence for 
notational clarity): 
 

1 11 12 1

2 12 22 2

V Z Z I
V Z Z I
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

  and/or:  1 11 1 12 2

2 12 1 22 2

V Z I Z I
V Z I Z I
= +
= +

 

 

We also have the (auxiliary) relations for input and output impedances: 1 1 1V Z I=  and 2 2 2V Z I= . 
 
Thus: 

1 1 1 11 1 12 2

2 2 2 12 1 22 2

V Z I Z I Z I
V Z I Z I Z I
= = +
= = +
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Rewriting these as: 

( )
( )

1 11 1 12 2

2 22 2 12 1

Z Z I Z I

Z Z I Z I

− =

− =
   or:   

( )
( )

1 11 1 12 2

12 1 2 22 2

Z Z I Z I

Z I Z Z I

− =

= −
 

Dividing the two LHS equations (and eliminating 12Z ) we see that:        
( )
( )

2
1 11 2

2 22 1

Z Z I
Z Z I

− ⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

. 

Dividing the two RHS equations (eliminating the currents) we see that: 
( )

( )
1 11 12

12 2 22

Z Z Z
Z Z Z
−

=
−

 

i.e. ( )( )2
12 1 11 2 22Z Z Z Z Z= − − , which can be rewritten either as              

( )
2

12
11 1

2 22

ZZ Z
Z Z

= −
−

  

or as 
( )

2
12

22 2
1 11

ZZ Z
Z Z

= −
−

. The LHS equations can be rewritten again in the following form: 

( )
( )

11 1 12 2 1

22 2 12 1 2

Z Z Z I I

Z Z Z I I

= −

= −
 

 

From the relationship ( ) ( ) ( )2
1 11 2 22 2 1Z Z Z Z I I− − =  we can also rewrite this as:  

 

( )( ) ( )( )
( )( ) ( )( )

2 2
11 1 2 22 2 1 1 22 2 2 1

2 2
22 2 1 11 1 2 2 11 1 1 2

Z Z Z Z I I Z Z Z I I

Z Z Z Z I I Z Z Z I I

= − − = + −

= − − = + −
 

 
This is about as far as we can go in terms of obtaining useful relations using only the two coupled 
equations of the complex matrix relation. 
 
     In order to uniquely determine/specify all four of the Zij elements of the complex matrix, one 
additional relation is needed. The relation we will use is associated with energy/energy density {n.b. 
which are both manifest scalar quantities}. For electrical circuits with reactive components, the 
instantaneous energy stored in capacitors and inductors is  ( ) ( ) ( ) ( )2 *1 1

2 2CU t C V t CV t V t= =  and 

( ) ( ) ( ) ( )2 *1 1
2 2LU t L I t CI t I t= =  respectively, where * denotes complex conjugation, i.e. 

if A a iα= + then *A a iα= − where 1i ≡ − and 1i− ≡ − − . 
 
     From the above complex matrix relation =V I , we can form quantities like ( ) 2

V t by taking the 

complex transpose ( )*T *T *T= =*TV I I and then multiplying =V I  on the left by its 
complex transpose, i.e.: 

( )( ) ( )*T *T *T *T= =*TV V I I I I  
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In matrix form, this is explicitly (again suppressing the time-dependence for notational clarity): 
 

( ) ( ) ( )* * * * * ** * * *
1 2 1 2 1 21 11 12 1 11 12 111 21 11 12

* * * *
2 21 22 2 12 22 212 22 12 22

V V I I I IV Z Z I Z Z IZ Z Z Z
V Z Z I Z Z IZ Z Z Z

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
Carrying out the matrix operations in stages we obtain: 
 

( ) ( )* * * * * * * * * *
1 2 11 1 12 2 12 1 22 21 11 1 12 2

2 12 1 22 2

V V Z I Z I Z I Z IV Z I Z I
V Z I Z I

+ + +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 

Or: 

( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
1 2 11 12 1 12 22 2

* * * * * *
11 12 12 22 1 2 11 12 12 22 1 2             

V V Z Z I Z Z I

Z Z Z Z I I Z Z Z Z I I

+ = + + +

+ + + +
 

But 1 1 1V Z I=  and 2 2 2V Z I= , thus: 
 

( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2 2
1 1 2 2 11 12 1 12 22 2

* * * * * *
11 12 12 22 1 2 11 12 12 22 1 2                            

Z I Z I Z Z I Z Z I

Z Z Z Z I I Z Z Z Z I I

+ = + + +

+ + + +
 

 
     Before mindlessly/brute-force solving this relation, it is very useful to note that physically, 
electromagnetic energies and/or energy densities are additive scalar quantities, i.e. that 

( ) ( ) ( )1 1 2 2, , ...totU t U r t U r t= + +  More specifically, the additive nature of EM energy/energy density 

means that no interference/no cross-terms involving quantities such as ( ) ( )*
1 1 2 2, ,I r t I r t and/or 

( ) ( )*
1 1 2 2, ,I r t I r t as in the above relation are allowed, for if they did exist, this would imply 

instantaneous/non-local/faster-than-light propagation/transfer of energy, e.g. from the point 1r  to the 
point 2r  (or vice-versa), which would be acausal, a phenomenon which is not observed in our 
universe. Information cannot propagate faster than the speed of light, c. Hence any/all such cross 
terms in energy/energy density formulae are strictly forbidden. In our current situation, this explicitly 
means that:  

( ) ( ) ( ) ( ) ( ) ( )* * * * * *
11 12 12 22 1 1 2 2 11 12 12 22 1 1 2 2, , , , 0Z Z Z Z I r t I r t Z Z Z Z I r t I r t+ + + =  

and thus: 

( ){ } ( ) ( ){ } ( )2 22 2 2 2 2 2
1 11 12 1 1 2 12 22 2 2, , 0Z Z Z I r t Z Z Z I r t− + + − + =  

 
     Solving either of these equations, in addition to using the two coupled equations of the complex 

matrix relation and the use of the Reciprocity Theorem, in combination with explicit measurements 
of at least two of the four experimentally observable quantities ( )1V t , ( )2V t , ( )1I t and ( )2I t {n.b. at 
least one measurement must be on the input side and at least one measurement must be on the output 
side of the four-terminal network} and the use of the auxiliary relations 1 1 1V Z I=  and 2 2 2V Z I=  
enables us to fully/uniquely determine all four of the Zij elements of the complex matrix. 
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     Note also from the immediately above equation, it might be tempting to believe that  

2 2 2
1 11 12Z Z Z= +  and hence also that 2 2 2

2 12 22Z Z Z= +  (invoking the Reciprocity Theorem), 
which would certainly satisfy this equation; however, explicit/brute-force calculations show this is not 
the case/is not true. The reason is simple, because we have already previously obtained the following 
relations from the two coupled equations of the complex matrix equation: 
 

( )
( )

11 1 12 2 1

22 2 12 1 2

Z Z Z I I

Z Z Z I I

= −

= −
  or: 

( )
( )

1 11 12 2 1

2 22 12 1 2

Z Z Z I I

Z Z Z I I

= +

= +
  ⇒   

( )

( )

22
1 11 12 2 1

22
2 22 12 1 2

Z Z Z I I

Z Z Z I I

= +

= +
 

 
     Skipping much tedious complex algebra, we simply quote the result of using either of the above 
two “energy / energy density” relations and all the other relations, enabling us to express e.g. 12Z  in 
terms of the four explicitly measured experimental quantities ( )1V t , ( )2V t , ( )1I t and ( )2I t : 
 

* *
1 2 2 1

12 212 2
1 2

V I V IZ Z
I I

+
= =

+
 

 

Note the manifest symmetry in the above expression under the interchange of 1 2 indices, which 
arises as an explicit consequence of the Reciprocity Theorem, i.e. requiring 12 21Z Z= . 
 
     Once 12Z has been determined, the other two elements of the complex matrix can be determined 
e.g. by using the relations: 

( )
( )

11 1 12 2 1

22 2 12 1 2

Z Z Z I I

Z Z Z I I

= −

= −
 

 

where the complex input and output impedances are 1 1 1Z V I=  and 2 2 2Z V I= , respectively. 
 


