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ABSTRACT 

 
To better understand the unique tone of both a plastic and wooden clarinet, an 
analysis of sound production was taken by several methods. The sound output from 
the clarinet was recorded and run through a phase-sensitive wave analysis program to 
determine the phase relations, frequencies, and intensities of the most prominent 
harmonics. Using a piezoelectric transducer, phase-sensitive measurements of the 
complex pressure and particle velocity at the input and output were taken across a 
range of frequencies. These measurements were then used to determine the complex 
impedance and sound intensity at the input and output. The phase results indicate 
some of the effects of the material and structure of the instrument on tone. 

 
I.  Background 

 
The clarinet is part of the class of 

wind instruments excited by reeds, 
including bassoon, oboe, and brass 
instruments, which use the lips as a sort of 
“reed”.1 The reed acts as a flow-control 
device, creating oscillations by altering the 
rate at which air enters the instrument2, 
and effectively closes one end of the 
tubing. The other end (the bell) is open. 
Another class of wind instruments, 
including flutes and recorders, are excited 
by a stream of air across one end of the air 
column1. The latter instruments are 
effectively open at both ends. 

When an instrument is played, we 
hear a mixture of harmonics. The specific 
sound of the instrument is defined partly 
by the ratios of output intensity amplitudes 
between different harmonics. The time-
averaged complex longitudinal sound 
intensity, ( )I r , is defined as 

 
( ) ( ) ( )zI r p r u r∗= ⋅  

 

where ( )p r  is the complex pressure 
amplitude (Pascals) and ( )zu r  is the 
complex longitudinal particle velocity 
(m/s). The SI units of sound intensity are 
Watts/m2 

The resonant harmonics of a certain 
pitch correlate with the points of 
maximum impedance. The complex 
specific acoustic longitudinal impedance, 

( )Z r , is defined as 
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This has units of acoustical ohms  
(= kg/m2-s). 

The open end of a standing wave 
tube has a very low p  and a high zu , 
corresponding to a very low impedance. 
Similarly, the closed end of a standing 
wave tube has a high p  and a low zu . The 
cylindrical standing wave tube with both 
ends open or both ends closed resonates at 
a lowest, fundamental frequency 0f , 
defined as  
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where c is the speed of sound and L is the 
length of the tube. 

Higher resonant frequencies are 
defined as  
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where n=1, 2, 3… 

If one end is open and one end is 
closed, the fundamental pitch is defined as 
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and the higher frequencies as 
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In other words, only the odd harmonics 
resonate in a closed-open cylinder. 
 

 
Figure 1: The pressure waveform for 
resonant frequencies of a cylindrical bore 
and conical bores at various stages of 
completion. If a conical bore is nearly 
complete, it will resonate at the same 
frequencies as an open-open cylinder of 
the same length even if the small end is 
closed.3 

 
The expected resonant frequencies of 

an idealized instrument derived from these 
equations do not exactly match what we 
measure in most real situations because of 
the effects of damping and dissipation that 
are disregarded in the ideal case. We 
define the inharmonicity to be the 
difference between the actual and expected 
values of n. In other words,  

 
actual idealn n nΔ = −  

 
The clarinet is the only instrument of 

its class with a cylindrical bore, and these 
same harmonic patterns are not true in a 
conical bore. A tube resembling a 
complete or nearly complete cone will in 
fact have the same resonant frequencies as 
the open-open tube, as shown in figure 1. 
If a cone is nearly complete and closed at 
the small end, it resonates in the same way 
as a complete cone.  

For both conical and cylindrical 
bores, the fundamental pitch is determined 
by the length of the instrument. Tone holes 
in the instrument effectively shorten the 
length of the tube and allow for more 
notes to be played. However, an 
instrument with open tone holes does not 
resonate with the same harmonic range as 
an instrument with the same effective 
length and no tone holes. Above a certain 
critical frequency, a pipe with open tone 
holes stops resonating2.  

In most cases, the fundamental 
frequency will have the highest input 
impedance of the harmonics present, so 
the instrument will most strongly resonate 
at the fundamental pitch. It is nonetheless 
possible to manipulate the vibrations of 
the air column so that it will resonate most 
strongly at a higher harmonic. 

Register holes are a special type of 
tone hole that force a frequency other than 
the fundamental to have the highest 
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impedance. A register hole is typically 
placed about a third of the way down the 
instrument. Opening the register hole 
creates a pressure node that lowers the 
input impedance at the fundamental 
frequency while leaving a higher harmonic 
relatively unaffected. The second or third 
harmonic is then most likely to sound 
when the instrument is played. Creating 
the pressure node also causes the 
wavelength of the fundamental pitch to 
shorten, making the fundamental 
frequency slightly higher2.  

The sound wave produced is thus a 
combination of waves with different 
frequencies. Often, the components of the 
overall sound wave are not in phase with 
the fundamental wave. The patterns to 
these phase shifts are also unique to each 
instrument, and can be observed in the 
complex harmonics, pressure, particle 
velocity, intensity, and impedance. It has 
been argued that it is these phase relations 
that creates a unique tone, rather than the 
amplitudes of the components4. 

Backus performed some 
measurements of the input impedance for 
clarinet and other reed instruments by 
applying a constant acoustic current to the 
instrument and measuring the pressure 
changes over frequency, and observed 
several tendencies in the different ranges 
on the clarinet. It is useful here to define 
the three registers: the chalumeau, which 
is the lowest register; the clarion, which 
begins at the lowest note making use of 
the register key (concert A4 on a Bb 
clarinet) and ends on concert Bb5; and the 
altissimo register, consisting of all notes 
above that. 

In the chalumeau register, the 
impedance peaks were compressed, 
resulting in a negative inharmonicity of 
greater amplitude in higher resonances. 
The impedance of the lowest resonance of 
notes in the chalumeau is typically 

between 800 and 1000 Ohms, and the next 
resonance (about three times the 
fundamental) has an impedance between 
500 and 700 Ohms. 

For most notes on the clarinet, the 
highest impedance peak corresponds to the 
note played with that fingering. In the 
altissimo register and the higher notes of 
the clarion, though, the highest impedance 
peak tends to occur at a different 
harmonic, usually one of the lower ones. 

In the clarion register, Backus 
observes the resonances as randomly 
distributed relative to the harmonics.1 

 
II.  Experimental Apparatus and 

Method 
 
We first recorded several notes being 

played on both a wooden Buffet R13 
clarinet and a plastic Vito clarinet at the 
bell of the instrument with a Peavey PVM-
45 dynamic microphone and a Marantz 
PMD671 24-bit digital recorder. The 
sound produced from the mouthpiece 
alone was also recorded. Each recording 
was analyzed for the frequencies and 
phase relations of the harmonics using a 
MATLAB-based computer program 
written by Joseph Yasi6. 

We also attempted to measure 
pressure and particle velocity as the 
instrument was played with microphones 
in the mouthpiece, but unfortunately the 
amplitude of sound in the mouthpiece was 
over 130 dB even at very soft dynamics, 
so the microphones were not able to take 
data. 

A phase-sensitive apparatus was 
developed to measure the complex input 
and output impedances and sound 
intensities across a range of frequencies by 
exciting the instrument with a 
piezoelectric transducer. In this apparatus, 
an Agilent 33220A frequency generator 
produces a sine wave at a specified 
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frequency and sends it through a voltage 
amplifier to increase the voltage output by 
a factor of 10, and through a negative 
impedance converter (NIC) to produce a 
constant current with a piezoelectric 
transducer. The NIC causes a 90−  phase 
shift in the signal. The piezoelectric 
transducer is attached to the reed opening 
of the mouthpiece with cyanoacrylate 
glue. As a reference for the phase, the sine 
wave is also sent to 4 SRS-830 lock-in 
amplifiers measuring the complex pressure 
and particle velocity at the input and 
output of the instrument. 

In order to measure the input 
impedance, a clarinet mouthpiece was 
modified to fit a particle velocity 
microphone and a differential pressure 
microphone, as seen in figure 2. The 
mouthpiece was then sealed off with an 
apiezon sealing compound. Pressure and 
particle velocity microphones also were 
placed at the bell of the instrument to 
measure the output impedance. 

The microphones used to measure 
pressure were omni-directional 1/10” 
diameter Knowles Acoustics FG-23329 
high-performance microphones, placed 
perpendicular to the airflow. To measure 
longitudinal particle velocity, we modified 

Knowles Acoustics EK-23132 high 
performance microphones to work as 
differential pressure microphones by 
removing the back cover plate. Because 
inertial forces dominate over dissipative 
forces or viscous effects in air, we can 
then find the particle velocity using the 
one-dimensional Euler’s equation for 
inviscid fluid flow, 

 
( , ) ( , )zu z t p z t
t z

ρ0

∂ ∂
= −

∂ ∂
 

 
where ρ0  is the density of air. To solve for  

( , )zu z t , we integrate Euler’s equation, 
 

0

1 ( , )( , )
t

z
p z tu z t dt

zρ −∞

′∂ ′= −
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This equation is physically solved 

using a custom-built integrating preamp 
for the differential pressure microphone 
signal. The data-taking program starts at 
29.5 Hz and continues to take data in 1 Hz 
steps up to 4030.5 Hz. Because of 
background noise from the ventilation 
system in the room, we sometimes have to 
start at 39.5Hz or 49.5Hz5.

          
Figure 2: the set up for microphones in the mouthpiece (left) and at the bell of the clarinet. 

 



 
The absolute microphone 

sensitivities were calibrated using an 
Extech Sound Level Calibrator (SLC) 
model 407766 and an Extech Sound 
Pressure Level (SPL) Meter model 
407768.  Using the SPL meter, we confirm 
that the sound from the SLC is produced at 
94dB. We then calibrate the sensitivities of 
the pressure and particle velocity 
microphones by placing them in the 
opening of the SLC and measuring the AC 
rms output voltage with a Fluke digital 
multimeter. The average pressure 
microphone sensitivity was about 280 
mV(rms)/ Pa(rms) and the average particle 
velocity microphone sensitivity was about 
80 mV(rms)/ Pa*(rms), where 1 Pa* is 2.4 
mm/second. 

Using another MATLAB-based 
computer program, the complex 
impedance and sound intensity at the input 
and output are calculated from the 
corresponding complex pressures and 
particle velocities. Over the frequency 
range of interest, the program then 
separately graphs the real and imaginary 
components, the phase offsets, and the 
value in the complex plane for pressure, 
particle velocity, impedance, and intensity. 

However, the raw-data results for 
both pressure and particle velocity are 
affected by several phase shifts. We 
determined these phase shifts both by 
performing the same measurements on a 
standing wave tube and by attaching the 
piezoelectric transducer to a baffle board, 
both of which have known phase results. 
The phase shift in the circuit from the 
frequency generator to the piezo driver 
totals to about 180−  in the range of 
interest. The particle velocity mic preamp 
has an additional phase shift of 90− , 
while the pressure mic preamp does not 
have any shift. There are also frequency-
dependent phase shifts for both results. 

To get phase-corrected results, we 
must also apply a frequency dependent 
rotation matrix, defined as 

 
( ) cos[ ( )] sin[ ( )] ( )
( ) sin[ ( )] cos[ ( )] ( )

corr c c obs

corr c c obs

X f f f X f
Y f f f Y f

ϕ ϕ
ϕ ϕ

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 
for 0cϕ < .  

We then analyze the data taken on 
the instrument with phase corrections and 
absolute microphone sensitivities applied5. 
 
III.  Results and Discussion  

 
The notes recorded on the clarinet 

were D3, Eb4, Ab4, A4, Bb5, and G6. D3, 
Eb4, and Ab4 are the notes in the 
chalumeau register, A4 and Bb5 are in the 
clarion register, and G6 is in the altissimo. 
D3 is the note with all tone holes closed. 

We also recorded the sound 
produced from the Vandoren M13 lyre 
mouthpiece used in these recordings, and 
from the modified Selmer Bundy 
mouthpiece also used to measure 
impedance. We can see from the results in 
Figure 3 that the modifications done to the 
clarinet mouthpiece to take impedance 
measurements did not have a significant 
impact on the results. 

From the analysis of each waveform 
on both the wooden and plastic 
instruments (Figures 4-5), we can see 
several trends across the ranges. One of 
these is the formant, a fixed frequency 
region at which the harmonics of any tone 
played on the instrument are emphasized. 
The two formant regions on the clarinet 
occur around 1500-1700 Hz and 3700-
4300 Hz4.  

Many notes also had a peak near 0 
Hz, likely because of a non-linear 
distortion resulting that occurs because of 
the mix of frequencies in the clarinet’s 
tone7. Lower notes, such as the D3, tend to 
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have a greater number of clearly defined 
harmonic peaks. The frequency correlating 
to the intended note is typically the first 
harmonic measured when the note is 
played.  

Contrasting between the Vito and 
Buffet clarinets, we can see that for lower 
notes, the Vito tends to have more 
prominent harmonics at higher frequencies 
(Figures 4-5). In higher notes such as the 
G6, the Buffet clarinet tends to have more 

prominent and clearly defined harmonics 
(figure 5). It is likely because of this trend 
that the Buffet instrument tends to play 
more easily at higher frequencies.  

Looking at inharmonicity (figure 6), 
we also see that the harmonics on the 
Buffet R13 clarinet tended to occur at 
frequencies closer to the expected value 
than those on the Vito. This also could 
contribute to the better quality of sound 
produced from the Buffet. 

 
 
Figure 3: The comparison of the harmonics of different clarinet mouthpieces. LEFT: 
Vandoren M13 Lyre, which was used when the instrument was played. RIGHT: Modified 
Selmer Bundy Mouthpiece, also used in the impedance measurements 

  
Figure 4: The harmonics measured for D3 on the Buffet R13 (left) and the Vito. 

Vandoren M13 
Lyre 

Selmer Bundy 

Buffet R13 
D3 

Vito 
D3 
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Figure 5: the harmonics extracted from the analysis of the waveform recording for (from top) 
A4, Ab4, and G6. The graphs on the left are from the Buffet R13 clarinet, and those on the 
right are from the Vito. We can see in the graphs of Ab4, which is typically considered the 
weakest note on clarinet, a distinct dip in amplitude around 1000 Hz, the location of the 
second harmonic. For the G6, the frequency corresponding to G6 is actually the first peak, 
but the second peak, corresponding to G7, is stronger. We hear G6 because of the nonlinear 
response of the human ear, which causes us to hear the first harmonic more strongly7. 

Vito 
A4 

Vito 
Ab4 

Vito 
G6 

Buffet R13 
A4 

Buffet R13 
Ab4 

Buffet R13 
G6 



 

 
 
Figure 6: The inharmonicity of the Buffet R13 and Vito for the note A4. We can see that the 
harmonics are closer to the ideal value on the Buffet R13. 

When we measured the complex 
input impedance of both clarinets, the 
amplitude of impedance peaks generally 
occurred at a slightly higher frequency 
than they did for a person playing the 
instrument. The presence of the reed in the 
clarinet lowers the frequencies of 
resonances when the instrument is played2, 
so this shift was likely caused by the use 
of a piezoelectric transducer instead of a 
reed to excite the air column. 

The effects of the register key on the 
instrument became far more noticeable 
when we measured input impedance. The 
fingerings for D3 and A4 differ only by 
the opening of a register hole for A4. 
Contrasting the input impedance for the 
two (Figure 7), we see that the third 
harmonic in A4 is the most prominent, 
whereas the fundamental is strongest in 
D3. Another less obvious difference is the 
frequency of the fundamental resonance, 

which occurs at 151.5 Hz on the note D3, 
but at 212.5 Hz for A4. This demonstrates 
that the pressure node must shorten the 
wavelength of the fundamental pitch while 
leaving the 3rd harmonic relatively 
unchanged. 

Another pair of notes that are related 
by the register key is Eb4 and Bb5 (Figure 
8). The fundamental pitch was also raised 
from 330.5 Hz for the Eb4 to 376.5 Hz for 
Bb5. However, the third harmonic was 
also raised from 975.5 Hz to 995.5 Hz. 

From this, we can see the problem 
that results from the clarinet having only 
one register key used with a number of 
tone hole combinations. D3 has every tone 
hole closed, while Eb4 has most of the 
tones holes open, making the instrument 
about half as long. For both of these notes, 
the register key is not quite placed at the 
ideal position 1/3rd of the way down the 
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instrument, but the difference in distance 
is more extreme for Eb4. 

For notes at the higher end of the 
chalumeau range, however, the input 
impedance of the third harmonic is close 
enough to that of the fundamental that a 
player could practically reach both notes 

without the use of the register key. The use 
of only a single register key on Bb clarinet 
is only possible in practice because of the 
player’s ability to manipulate the pitch 
with his lips2. 

 

    

  
 
Figure 7: Input Impedance magnitude for D3 (top) and A4. Buffet results are on the left. 

  
Figure 8: The input impedance magnitude on the Buffet R13 for Eb4 (left) and Bb5.  
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Figure 9: The output impedance amplitudes for D3. Buffet results are on the left, Vito on the 
right.  

  

  
Figure 10: The input and output impedance for G6 on the Buffet (top) and Vito clarinets. The 
Vito clarinet does not have as clearly defined peaks in this range. 
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Figure 11: Complex input and output impedance for D3 on the Buffet (left) and Vito (right). 
Over the frequency range of interest, the phase pattern for impedance on the Buffet tends to 
be more centered about a certain point than those on the Vito. 

 
Figure 12: The complex input impedance for G6 on the Buffet (left) and Vito. We can see that 
in the range, the input impedance on the Vito is not as smooth as on the Buffet. 
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Figure 13: The input impedance for Ab4 on the Buffet (left) and Vito clarinets. Ab4 is the 
weakest sounding note on clarinet, and we can see that, even for the Buffet, the pattern of the 
phase across the range of interest is rather asymmetric. 

As shown in figure 9, we can also 
see a difference in the output impedance 
amplitudes between the Buffet R13 and 
Vito. The Vito has noticeably higher 
impedance at the higher frequencies at any 
range. This is also true for higher notes 
such as G6 (figure 10), but not to as great 
a degree. For the G6, the main difference 
is in the input impedance. From this, we 
can see that the Vito has less clearly 
defined input impedance peaks. 

From figures 11-13, we can also see 
how the phase relations can affect the 
changes in tone quality between different 
notes and different materials for 
constructing the instrument. For the 
clarinet, the tone hole combinations with 
the best tone quality tend to have relatively 
smooth input impedance curves centered 
around a certain point. On weaker notes 
such as Ab4, we see jagged curves and 
asymmetric patterns for the input 
impedance. 
 
IV. Conclusions 

 
With the data taken this summer, we 

began to explore the effects of different 
materials used to construct the clarinet. 
Finalized phase corrections can give us 
greater insight on the effects of phase 

offsets on tone quality. With appropriately 
desensitized microphones, we could also 
begin to explore the changes in pressure 
and particle velocity along the inside of 
the instrument, both while the instrument 
is being played and when excited by a 
piezoelectric transducer. Taking 
measurements for more of the notes would 
also help determine some of the effects of 
specific tone hole lattices. Developing a 
means of measuring the effect of vocal 
tract resonances, pressure on the reed from 
the embouchure, and other such factors 
dependant on the musician can also help 
us understand the way the unique sound is 
produced from an instrument. 
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