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ABSTRACT 

The sculpted wooden bars of a marimba were analyzed to investigate the higher 
harmonics present in the sound and the exponential time decay constants  
associated with each harmonic. A Yamaha YM-5100A five-octave rosewood  
marimba was used to carry out this experiment. Sounds from each of the Cn   
( n  = 2, 3, 4, 5, 6, 7) bars were recorded and analyzed using MATLAB-based  
programs. The harmonics contained within the bars were f1 , f4 , f10 , and f20 . 
The exponential time decay constants τ n  associated with each frequency value fn  
exhibited an inversely proportional relationship to their modal frequencies. The 
resonators of the marimba amplify only the fundamental and not the higher  
harmonics. 

 
I.   Background and Introduction 
 The marimba, a member of the  
percussion family of musical instruments, is 
a large wooden keyboard that is struck with 
yarn wrapped mallets, see Fig. 1. The  
keyboard, typically made from rosewood, is 
coupled to resonators placed below the 
wooden bars. The wooden bars are  
rectangular in shape and are sculpted on the 
underside, see Fig. 2. This sculpting allows 
for the tuning of higher harmonics in the 
sound produced by each bar. Each resonator 
is tuned to accentuate the fundamental of its 
associated bar. They are closed at the  
bottom and open at the top. While most 
resonators are typically cylindrical, their 
design varies for different manufacturers. 

 
 The musician uses two to four yarn 
wrapped mallets to strike the bars of the  
marimba. With each strike, the performer 
can hit the bar in three main locations, see 
Fig. 2: the center, off-center and near the 
edge. The center of the bar is directly above 
the resonator opening. Off-center is  
considered to be between the nodal point 
and the center of the bar. The edge is below 
the nodal point closest to the performer.  

 
 
 
 Each position offers a slightly different 
tone quality. When the bar is struck in the Fig. 1: Yamaha YM-5100A 

five-octave marimba 

Fig. 2: YM-5100A close-up on C2  bar to 
show sculpting and main striking areas 



center, the fundamental is accentuated the 
most and the higher harmonics are  
suppressed. As the bar is struck off-center, 
more of the higher harmonics can be heard 
and less of the fundamental. Near the edge 
of the bar the tone is similar to that of the 
off-center sound. The nodal point is a  
position where minimal vibration occurs, 
which does not produce a rich sound  
quality. Fig. 3 shows the vibrational motion 
of a sculpted marimba bar.  

 
  
 The voice of the marimba has not been 
as fully explored as many other musical  
instruments. Most studies carried out on 
marimbas investigated the vibrational  
motion of the bars using finite element 
analysis.2,3 Some studies have also been 
done to gain an understanding of the  
harmonic overtones of the marimba bars.4 
The resonators can be modeled as 

open/closed standing wave tubes; the theory 
of standing wave tubes is well understood.5  
 The harmonic content of percussion  
instruments is unique because they do not 
have the integer harmonics associated with 
other types of musical instruments. This is 
the case because many percussion  
instruments are two-dimensional, whereas 
other instruments are simply  
one-dimensional. The two-dimensional  
nature arises from the fact that the solid 
piece of wood used for marimba bars  
vibrates both transversely and  
longitudinally. By carving out the middle of 
the underside of the bars, the manufacturers 
can tune the bars to fit the higher harmonics 
into non-linear integer values.  
 Using numerical analysis, Bork  
analyzed the first five modes of an  
unsculpted and sculpted piece of wood.1 By 
Bork’s analysis, a sculpted piece of wood 
contains the fundamental f1 , the second 
harmonic f4 = 4 f1 , the third harmonic 
f10 = 10 f1 , the fourth harmonic f20 = 20 f1 , 

and fifth harmonic f27 = 27 f1 . While this 
behavior follows integers values, the series 
is not linear. The sculpted bar does not  
contain f2 , f3, f5 , f6 ,etc...  because of the 
two-dimensional nature of the solid piece of 
wood. 
 Reverberation time T60

n  for the nth   
harmonic is defined by the time interval  
required for the sound intensity to decrease 
by a factor of one million from its initial 
value, which is the time interval required for 
a decrease in the Sound Pressure Level by 
60dB.6 Cremer states that the reverberation 
time T60

n  of a harmonic of a marimba bar is 
inversely proportional to its modal  
frequency fn : 
 

T60
n =

ln106

(2π )η fn
≈
2.2
η fn

,        (1) 

 

Fig. 3: Displacement and vibrational  
motion of the first five harmonics of a 

sculpted marimba bar, adapted from Bork1 



whereη  is the ratio of the imaginary to the 
real part of the complex elastic modulus.7 
The value of η  is associated with the  
absorptive properties of the wooden bar and 
is expected to be frequency independent for 
small amplitude vibrations.  

As a follow-up to Bork’s and Cremer’s 
research, I was interested in seeing if both 
relationships held true in my personal  
marimba, a Yamaha YM-5100A. 
 
II.   Method  
  A Yamaha YM-5100A was used for 
this experiment. It includes a five-octave 
range from C2  to C7 (65.5 to 2118.0 Hz  
respectively). Each Cn  (n  = 2, 3, 4, 5, 6, 7) 
bar was struck with a Malletech GS-13  
mallet (general hardness) using a moderate  
velocity and force stroke. Each bar was 
struck with as much consistency as possible. 
Each bar was struck in three locations: the 
center, off-center below the upper node and 
on the bottom edge, see Fig. 2. Sounds from 
each Cn  bar were recorded with and without 
the resonators on the instrument. A  
Behringer ECM 8000 condenser  
microphone and a 24-bit Marantz PMD671 
digital recorder were used to record the 
sounds with a 44.1kHz sampling rate. The 
microphone was placed above the bar being 
struck. It was angled down at a 45 degree 
angle and set about one foot above each Cn  
bar. 
 The resulting .wav file was processed 
using the MATLAB Wav_Analysis.m  
program, written by a previous REU  
student, Joe Yasi8, and updated by myself. 
This program was used to fit the harmonic 
frequencies for each .wav file. The ratios 
between harmonics from Bork’s analysis 
were used to determine which frequencies 
to analyze. Only the first four harmonics 
were processed due to the increased  
difficulty analyzing the higher-order  
harmonics. From the processed data, the 

fitted frequency values for each harmonic 
were compiled. Using Microsoft Excel, the 
compiled frequencies were further analyzed  
determine their inharmonicities, i.e. the  
degree of variance from predicted values of 
each bar. 
 Marimba_4_Harmonic_Studies_NoDec.m, 
written by Professor Steven Errede, used the 
fitted frequency values as input to obtain 
exponential decay fits to each harmonic  
present in the .wav file. With the fitted  
frequencies for f1 , f4 , f10 , and f20   
declared in the program, it used digital  
filters to separate the sound into four  
frequency bands centered on each harmonic. 
The program fit decaying exponentials to 
the envelope within a 0.5 second window 
designated by the user. The slope and  
y-intercept values and their statistical  
uncertainties were then compiled into a  
Microsoft Excel spreadsheet with their  
associated frequencies. The fitted slope 
value given by the program is the  
exponential time decay constant τ n  for each 
harmonic.  
 Once the data was compiled into Excel, 
plots were made showing the exponential 
time decay constants τ n  versus the  
frequency for each harmonic. In addition, 
plots were made to show the effect  
of the resonators on the time decay  
constants and a compilation was made of all 
time decay constants τ n  versus their  
frequencies with and without resonators. 
 The effect of the resonators is due to its 
open/closed construction. Because of this 
open/closed design, the resonators only  
amplify odd integer harmonics.5 The speed 
of sound propagation in air can be described 
as the relationship between the frequency 
fn  and the wavelength λn :  

 
 v = fnλn .           (2) 
 
 



From (2) and knowing that n = 1,3,5,7... , 
 

 λn =
4L
nodd

,           (3) 

 
where L is the length of the resonator. For 
each bar, the resonator length is fixed. Only 
the fundamental is amplified by the  
resonator. This is because the higher  
harmonics of marimba bars are even integer 
harmonics, where n = 4,10,20 . These even 
integer harmonics will not couple with an 
open/closed resonator because of its odd  
integer harmonic spectrum.  
 The exponential time decay constant 
τ n is directly related to the reverberation 
time T60

n .6 
 
 T60

n = 2T30
n = ln103τ n                            (4) 

 
From (4) it is possible to solve (1) for η  in 
terms of τ n : 
 

 η ≡
ℑm YE{ }
ℜe YE{ } =

2
ωnτ n

=
1

πτ n fn
       (5) 

From (5) the values of η  were calculated 
for each Cn  bar frequency in the three  
different locations without the resonators on 
the instrument. This data was compiled  
using Microsoft Excel. 
 
III.   Results and Discussion  
 To test Bork’s claim that the marimba 
bars would have f1 , f4 , f10 , and f20 , the 
fitted frequencies from Wav_Analysis.m 
were analyzed in Microsoft Excel.  Ratios 
were calculated in relation the first  
harmonic. For example, the second  
harmonic ratio was f4 : f1 . The results of 
these calculations are shown in Fig. 4. The 
second harmonic ratio is consistent with the 
value of four. The third harmonic ratio is in 
good agreement with the value of ten. The 
fourth harmonic ratio is between nineteen 
and twenty. As the Cn  bar values increased, 
it became increasingly difficult to analyze 
the higher harmonics above the  
fundamental; hence only two bars could be 
analyzed at the fourth harmonic. The fifth 
harmonic mentioned by Bork was observed 
in the raw data, but was extremely weak. 
 The inharmonicity of the marimba bar is  

Fig. 4: Graph of frequency ratios for the first four harmonics of the marimba bar 



based on the absolute values expected to be 
present in the sound. The frequency ratios 
were compared to the absolute values  
1, 4, 10, and 20 respectively for each  
harmonic. The percentage of inharmonicity 
was then graphed in Fig. 5. The second 
harmonics are only off by about 1% from 
the predicted value suggesting that they are 
easier to tune than the third and fourth  
harmonics that vary up to about 4.5% from 

the expected integer values.  
 The data compiled from  
Marimba_4_Harmonic_Studies_NoDec.m 
showed the effect of the resonator on the 
time decay constants. One result from the 
analysis can be seen in Fig. 6 taken from 
C2 . The data in Fig. 6 is taken from a strike 
in the center of the marimba bar because 
this is where the fundamental couples most 
strongly with the resonators. The τ n  values  

Fig. 6: Graph of the effect of the resonators on the exponential time decay constants 

Fig. 5: Graph of percent inharmonicities for the first four harmonics of the marimba bars 



 
 
only show variation on the fundamental.9  
The time decay constant for the  
fundamental of the Cn  bar is significantly 
decreased when coupled to its resonator. 
This verifies that the resonators only couple 
to and affect the fundamental.  
 Once the data had been compiled from 
Marimba_4_Harmonic_Studies_NoDec.m, 
all the frequency values were graphed 
against their respective τ n  values. As seen 
in Fig. 7, τ n  has an inversely proportional 
relationship to the frequencies within  
margins of uncertainty. This verifies the  
relationship predicted by Cremer.  
 The data calculated from (5) was able to 
verify that the τ n  values found in the  
analysis are accurate. 9 The η  values should 
be consistent within each bar and even  
similar between the bars. Fig. 8 shows the 
values of η  within each bar. The η  values 
range between 0.0036 to 0.0068. The  
average η  value is η = 0.0045 ± 0.0009 , 
shown by the thick black line. 

 
 
IV.   Conclusions and Future Work 
 The frequency series for the harmonics 
present in the sculpted marimba bars do not 
follow a linear series. The harmonics  
contained in a marimba bar are f1 , f4 , f10 , 
and f20 . As the number of harmonics  
increases it becomes more difficult to tune 
and maintain an accurate relationship to the 
fundamental. As Cn  increases, the higher 
harmonics become more difficult to analyze 
due to weaker amplitudes and increasingly 
shorter decay times. 
 The resonators only have an effect on 
the fundamental because it is the only odd 
harmonic present. The fundamental couples 
to the resonator most strongly when the bar 
is struck in the center because this is where 
the relative amplitude of the  
fundamental is the greatest. By amplifying 
only the fundamental, the majority of the 
sound heard by a listener is the  
fundamental, which is ideal from a  
performer’s viewpoint.   
 

Fig. 7: Graph of all τ n values verses the frequencies with no resonators 



 
 The values for the exponential time  
constants generally follow an inversely  
proportional relationship to the frequency.  
Cremer’s equation (1) holds true for the Cn  
values in my personal Yamaha YM-5100A  
five-octave marimba. From here, more bars 
on the instrument could be recorded and 
analyzed with the same process to verify 
this relationship. 
 In order to ensure reproducibility,  
multiple recordings were taken during data 
acquisition. To give integrity to the method, 
these additional recordings were  
deliberately taken with different settings on 
the PMD671 digital recorder to test the  
effect on the outcome of the analyzed data. 
Adjusting the recorder parameters yielded 
data that fell within statistical uncertainties. 
 The measured values of η  were  
consistent with each other with slight  
variation, see Fig. 8. Since η  is expected to 
be frequency independent for small  
amplitude vibrations, this data is useful to 
see how accurate the analysis was  
completed. It shows where the method may  

 
not have been perfectly accurate and  
therefore produced possible systematic  
uncertainties. For example, the higher  
harmonic η  value for C5  in Fig. 8 differs 
significantly from its fundamental η  value. 
The η  values for C3  are the most  
self-consistent. The consistency of the η  
values also speaks to the intrinsic properties 
of the bar itself. The rosewood selected for 
each Cn  bar may have slight differences in 
their absorptive properties and hence result 
in slight variation in η  values. 
 The programs used throughout this  
research can be used in the future for  
analyzing other musical instruments and  
measuring their decay time constants. The  
current program could be especially useful, 
e.g. in the study of plucked string  
instruments like guitars. 
 To continue this research, it would  
interesting to investigate marimbas made by 
other manufacturers to see if their rosewood 
marimbas also share similar properties to 
that of the Yamaha YM-5100A. In addition, 

Fig. 8: Graph of η  values for each Cn  bar. The mean η  is given by the thick black line. 



an analysis of bars made from different 
types of wood and synthetic material would 
add to the understanding of marimba  
construction. To expand even further, this 
methodology could also be used on other 
keyboard percussion instruments like the 
vibraphone and xylophone. 
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