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ABSTRACT 

 
In order to gain a better understanding of the sound production of the viola, an analysis of 
its acoustic properties was carried out by various methods. By first recording bowed 
notes of its open strings, the phase-sensitive harmonic content was examined and com-
pared to the violin, and it was concluded that the viola’s mid-harmonics (#2-5) are rela-
tively stronger in comparison to the fundamental. In the time domain, the decay time as a 
function of frequency was observed to obey an inverse relationship with frequency, as is 
the case for other acoustical systems. The mean absorption coefficient of the wood was 
measured to be <η> = 0.27±0.19%.  The body response of the instrument was then inves-
tigated, revealing that its resonances do not lie on the frequencies of its open strings as in 
the violin but in between them, being the cause of its more subdued timbre. Lastly, near-
field acoustic holographic scans of the back of the instrument were carried out at five of 
its resonance frequencies to study its fundamental modes of vibration, allowing dis-
placement, sound intensity, acoustic impedance, and energy density to be plotted. 

 

I.   Background and Introduction  
 The viola is a bowed string instrument 
in the violin family that plays in the alto 
register. It is approximately 15% larger 
than the violin1 and is a perfect fifth lower 
in pitch, as the tuning of its four strings 
are A4, D4, G3, and C3. It generally has a 

mellower, darker sound. While the violin 
has been extensively studied, the viola has 
been significantly less so, and it is thus 
my motivation to examine its acoustical 
properties to see the factors that contribute 
to its unique timbre. 
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Figure 1. Structure of the viola. Labeled An-
dreas Eastman VA200 pictured left, diagram 
of cross-section shown above.  [Left image 
courtesy of Eastman Strings] 



2 

 Bowed instruments work in the fol-
lowing way: as the rosined bow slides 
across the strings, the temperature in-
crease causes the coefficient of static fric-
tion of the rosin to increase and the coef-
ficient of sliding friction to decrease1.  
This enforces a stick-slip motion of the 
string, corresponding to a saw-tooth 
waveform. The bridge transmits this vi-
bration vertically to the soundpost, and it 
is then transferred to the body of the in-
strument which then resonates the sur-
rounding air. Figure (1) shows the struc-
ture of the viola. 
 Each note played is comprised of a 
fundamental frequency, which corre-
sponds to the pitch that is heard, along 
with higher harmonics. Because the 
strings on stringed instruments closely 
approximate a 1-dimensional oscillating 
system, the harmonics are integer multi-
ples of the fundamental. This is illustrated 
in figure (2).  
 

   
 
  
 
  
 The characteristic sound of the in-
strument is dependent upon the relative 
amplitudes of these harmonics. Therefore 
by looking at the harmonic signatures of 
several notes played on the viola, we can 
compare the results with the same notes 
played on the violin and thus conclude 

how the differences in timbre correspond 
to the differences in harmonic content.  
 After the bow is released from the 
string the sound amplitude decays expo-
nentially. In many systems the decay time 
τ is inversely proportional to the fre-
quency. The decay time τ is related to the 
absorption coefficient of the wood η via2: 
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 The absorption coefficient η is defined 
as the ratio of the imaginary part of 
Young’s modulus to the real part of 
Young’s modulus, based entirely on the 
properties of the wood. It thus should be 
frequency independent. I used this relation 
to find the absorption coefficient for the 
wood of this instrument. 
 The sound quality that the instrument 
produces is largely dependent on its body. 
The body is the resonator that transforms 
the string vibrations of high amplitude, 
which can only radiate over a small vol-
ume of air, to sound waves of small am-
plitude that can radiate throughout an en-
tire room3. 
 The structure of the instrument body 
has natural resonant frequencies associ-
ated with it, in both the air and the wood. 
A good quality violin has resonances that 
lie on the frequencies of the open strings 
to give it the bright sound that it has2, 
shown by the violin response curve in fig-
ure 3. The viola, however, is not simply a 
“scaled-up” version of the violin where its 
dimension scale factor is proportional to 
its decrease in pitch1, and so I examined 
where these resonances lie for the viola. 
 
 
 
 
 

Figure 2. Harmonic Series of a 1 dimen-
sional string, from the fundamental to 
the 7th harmonic.  
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 Each resonant frequency corresponds 
to a mode of vibration, which becomes 
more complex for higher and higher fre-
quencies. The near-field acoustic 
holography technique is a method of ex-
amining these modes, as it measures the 
phase-sensitive air pressure and particle 
velocity at a fixed frequency in a 2-
dimensional scan across the instrument. 
From these measurements other physical 
quantities can be determined as functions 
of XY spatial dimensions, given by equa-
tions (1-4)5. 

Acoustic Impedance:   �
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 Where P is complex pressure, U is 
complex particle velocity, and ω = 2πf is 
the angular frequency. 
 Because the shape of the input wave-
form from the strings resembles a saw-
tooth wave, it contains higher harmonics 
and thus the motion of the instrument 

when being played is a superposition of its 
various modes of vibration. Understand-
ing these modes leads to a better under-
standing of how the body acts a resonator. 

 
II.   Method 
 Two different approaches are used in 
studying the viola’s sound production: 
first the recorded sounds of several notes 
on the instrument are analyzed to examine 
the harmonic content, and second the bod-
ily response of input vibrations of various 
frequencies is studied to understand this 
harmonic content. Three experiments are 
carried out to accomplish this: harmonic 
analysis in frequency and time domains, 
spectral analysis in frequency domain to 
find the resonances, and near-field acous-
tic holography to study the eigenmodes of 
vibration. I use a 16-inch 2004 Andreas 
Eastman VA200 viola for these experi-
ments. 
 Using a Behringer ECM 8000 con-
denser microphone and a 24-bit Marantz 
PMD671 digital recorder, the bowed four 
open strings were recorded on the viola.  
Using a MATLAB program 
‘Wav_analysis.m,’ written by Joe Yasi, 
the relative amplitudes and phases of the 
first eight harmonics were determined for 
each recorded sound. I compared these 
results to the same notes recorded on an 
1810 Simon Kriner violin. 
 Using the harmonic frequencies ob-
tained from this program, we investigated 
the decay times (τ) of each harmonic for 
the open strings of the viola. The relation 
between decay time tau and frequency 
was obtained using another MATLAB 
program ‘Viola_8_Harmonic_Studies.m’, 
written by Professor Errede, to obtain 
least-squared exponential fits of the am-
plitude decay from 0.1 to 0.9 seconds after 
the bow was released. These tau values 
were plotted versus frequency for the first 
8 harmonics of each open string. 

Figure 3. Response curve of a violin as a function of 
frequency. Peaks lie near frequencies of its open 
strings. [Image courtesy of Violin Resonances 
http://hyperphysics.phy-astr.gsu.edu]4 
 

Violin Response Curve 
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 Next, we carried out a spectral analy-
sis of the instrument body to find its reso-
nant frequencies. To excite the viola, a 
piezo-electric transducer was placed close 
to the bridge above the soundpost, as this 
is where most of the vibration from the 
strings is transferred. A pressure and par-
ticle velocity microphone pair was placed 
directly above the f-hole, where most of 
the sound that is resonated within the 
body is radiated from. A second piezo at-
tached to an accelerometer was used to 
measure the mechanical vibrations at five 
different locations on the instrument: the 
top right bout, bottom right bout, top left 
bout, bottom left bout, and close to the 
bridge, shown in figure 4.  
 Four lock-in amplifiers were used to 
measure the real (in phase) and imaginary 
(90˚ out of phase) components of each of 
these measurements at each frequency, 
from 29.5 Hz to 2030.5 Hz in 1 Hz steps. 
This data was obtained using the program 
‘PUsound2.c’ and analyzed with a 

MATLAB program “Viola_Analysis.m” 
which plotted these variables as functions 
of frequency in order to determine the 
resonances. The viola was suspended via 
rubber bands; the strings were damped 
with foam in order to obtain a pure vibra-
tion response of the soundbox. The set up 
of this experiment is shown in figure 4. 
 Lastly, after finding the resonances of 
the body and air inside the viola, near-
field acoustic holography XY scans across 
the back of the instrument were performed 
at those given frequencies. Near-field 
acoustic holography 2-dimensionally im-
ages surface vibrations at fixed frequen-
cies, measuring complex pressure and par-
ticle velocity in 1 cm steps. From these 
phase-sensitive measurements other 
physical quantities such as acoustic im-
pedance, sound intensity, particle dis-
placement, and particle acceleration were 
measured (equations 2-5) and plotted after 
being processed through the MATLAB 
program ‘Viola_PUxy_scan_analysis.m.’ 

Input Piezo 

Output Piezo and 
Accelerometer 

P and U mic 

Figure 4. (Left) Five locations of mechanical vibration measurements. (Right) Setup of spectral 
analysis experiment, to find resonant frequencies of air and body of instrument. 
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 For this experiment, we excited the 
viola using two rare-earth magnets placed 
on either side of the top plate, close to the 
bridge and soundpost. A coil was placed 
in proximity to the outer magnet, which 
was connected to a sine-wave generator 
creating an alternating magnetic field to 
induce the magnets to vibrate at a given 
frequency, as shown in figure (5). Using a 
pressure and particle velocity microphone 
attached to the XY translation stages, we 
carried out the two dimensional scan of 
the plane immediately above the instru-
ment at a fixed frequency, spanning an 
area of approximately 40×70 cm.  This 
was done for five resonance frequencies. 
It should be noted that since the back of 
the viola is not flat, the imaging resolution 
is worse towards the edge of the instru-
ment because the microphone is slightly 
further away from the back plate. Also, 
the frequencies used for this scan were 

somewhat different than the ones found 
for the spectral analysis experiment, as (1) 
the vibration input was in a slightly differ-
ent location than in the first experiment, 
and (2) the instrument is supported by dif-
ferent means. Figure (5) shows the setup. 
 
III.   Results and Discussion  
 Figures (6) and (7) compare the open 
A and open D harmonic signatures on the 
viola to the violin, where the fundamental 
of each instrument is normalized to 10 dB. 
It can be seen that the viola has relatively 
stronger harmonics #2-6, with the violin 
having a more prominent fundamental. 
This difference in relative amplitudes of 
harmonics corresponds to the difference in 
timbres of the two instruments. The phase 
of each harmonic is also shown for both 
notes, differing greatly for each instru-
ment as well.

 
 

PU mic 

XY Translation Stages 

Coil 

Magnets 

Figure 5. Setup of near-field acoustic holography experiment. Magnets and coil are used to ex-
cite viola at given frequency 
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Relative Harmonic Amplitudes 
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Relative Harmonic Phases 
 

 
 
 

Figure 7. Comparison of the harmonic content of the D string on the 
viola to the violin. Shows relative amplitudes (above) with funda-
mental normalized to 10 dB, and relative phases for each (right). 

Viola A 

Violin A 

Viola D 

Figure 6. Comparison of the harmonic content of the A string on the 
viola to the violin. Shows relative amplitudes (above) with funda-
mental normalized to 10 dB, and relative phases for each (right). 

Violin D 
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 In the time domain, the decay time τ 
of harmonics associated with each of the 
four open strings of the viola were ob-
tained using a MATLAB based program 
to obtain exponential fits for each har-
monic to determine the relation between 
the decay time τ and frequency. We find 
there is a dual decay rate, one dominating 
immediately after the initial release of the 
bow and a second longer τ dominating 
after about 0.4 seconds. The latter is ap-
proximately one order of magnitude less 
in amplitude than the shorter rate at the 
outset of the decay. This is illustrated in 
figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  
 
 

 Assuming τ2 is associated with damp-
ing due to sound dissipation/sound radia-
tion because it is significantly lower in 
amplitude, we focused primarily on the 
dominant decay rate τ1, which we as-
sumed was due to the mechanical vibra-
tion of the body. Figure (9) shows an ex-
ample of the exponential fits obtained 
from the MATLAB program for this first 
time interval 0.1 to 0.4 seconds. 

 
 
 
 
  
 The calculated tau values vs. fre-
quency are plotted on a log-log plot and 
fit to an exponential curve, shown below 
in figure (10).  It can be seen that the ex-
ponent of the fit is -1.006, very close to 
our hypothesis. Tau is indeed inversely 
proportional to the frequency. 
 However there is much scatter associ-
ated with this plot. This is because the 
strings are coupled together, thus energy 
is transferred between them and their 
various harmonics. 
 Using equation (1) we plot the eta val-
ues associated with each tau. It is shown 
in figure (11) that there is no frequency 
dependence, as expected. These values 
were averaged together to obtain a mean 
value of absorption coefficient, of <η> = 
0.27±0.19%. The uncertainty associated 
with the scatter in these data points is due 
to the same reason stated above. 

Figure 9. Exponential fits of each harmonic 
of the open A string from 0.1 to 0.4 seconds.  

Amplitude  
(log scale) 

Figure 8. Illustration of dual decay rate 
(top), evidenced by filtered decays for each 
harmonic of the open A (bottom). 

Time 
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Figure 10. Decay time τ  for the first 8 harmonics of each open string plotted vs. frequency on a 
log-log plot. The exponent of the best fit power curve verifies an inverse relationship. 

Figure 11. Absorption coefficient η calculated for the first 8 harmonics of each open string vs.  
frequency on a log-log plot. Best fit power curve verifies frequency independence. <η >= 0.27±0.19% 
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 To further understand the viola’s 
sound production, we determined its reso-
nant frequencies by measuring complex 
pressure, velocity, and mechanical vibra-
tion as functions of frequency. The pres-
sure and velocity spectra are shown below 
in figure (12). 

 The two major peaks for both are 
around 220 Hz and 1000 Hz. The 220 Hz 
resonance corresponds to the Helmholtz 
frequency of the soundbox, which is the 
main air resonance of the instrument. The 
results of the mechanical vibrations are 
shown in figure (13). 
 

 
 

 

Open String 
frequencies 

Figure 12. Pressure and particle velocity response as functions of frequency, shown respectively 
on semi-log plots. Units are RMS Pascals for P and RMS mm/sec for U. 

Figure 13. Output piezo response in RMS mV for each of the five locations on instrument, shown on a semi-
log plot. Four red lines correspond to frequencies of open strings. Peaks do not occur at these frequencies. 



10 

 While the resonant frequencies of the 
violin tend to lie on the frequencies of its 
open strings, it is shown in these plots that 
the resonant peaks lay in between the 
open string frequencies for the viola. This 
is the major factor that differentiates the 
timbre of the violin to the characteristic 
darker, richer viola sound. Data on addi-
tional viola models is needed see how 
these resonances change over a range of 
quality.  
 Using these resonances, five near-field 
acoustic holographic scans were carried 
out at 224 Hz, 328 Hz, 560 Hz, 1078 Hz, 
and 1504 Hz. The first few modes of vi-
bration are shown in figures (14-18). For 
the 2-dimensional plots the instrument is 
oriented such that the neck is positioned to 
the right, and for the 3-dimensional plots 
the instrument is oriented such that the 

neck is positioned towards the left and 
coming out of the page. 
 The first plots in figure (14) show the 
real part of the particle displacement, rep-
resenting how the instrument is vibrating 
for each resonance. For the first mode at 
224 Hz the instrument is in its “breathing” 
mode, where the entire back plate is sim-
ply vibrating up and down. Sound that is 
diffracting around the edges can be seen 
by the two red areas.  At 328 Hz the viola 
is in its second mode, where the two sides 
of the instrument are vibrating out of 
phase with one another. The vibration pat-
terns get more complex for higher fre-
quencies. 
 Because the waveform from the 
strings resembles a saw-tooth function 
containing higher harmonics, the actual 
motion of the instrument when being 
played is a superposition of these modes. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Particle Displacement Re{D(x,y)} vs. Modal Frequency: 

224 Hz 328 Hz 560 Hz 1078 Hz 1504 Hz 

Figure 14. Particle displacement plots for five resonances, representative how instrument is 
vibrating. The instrument is oriented such that the neck is positioned to the right. 
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  Figure (15) shows the complex acous-
tic impedance for each resonance. The top 
row is the real part, associated with 
propagating sound, while the bottom row 
is the imaginary part, associated with non-
propagating sound.  Acoustic impedance 
is a measure of air resistance to flow of 
acoustic energy. These plots also illustrate 
how the imaging resolution worsens for 
higher frequencies, as the differential dis-
tance between the instrument and micro-
phone becomes more significant for 
smaller wavelengths. The outline of the 
instrument is clearly shown in the first 
mode, but is undistinguishable in the last 
two. This is one problem with applying 
this method to an instrument surface that 
is not flat. 

 Next, figure (16) shows the plots of 
complex sound intensity, again with the 
real part shown on the top row, which is 
associated with propagating sound energy, 
and the imaginary part on the bottom row, 
associated with non-propagating sound 
energy. These plots display the flow of 
energy in each mode. Figure (17) below it 
shows the sound intensity level in decibels 
for the five resonances.   
 Lastly, figure (18) shows the acoustic 
energy density, with wrad associated with 
the propagating sound and wvirt associated 
with the non-propagating sound. Again, it 
can be seen that it gets more complex for 
higher resonant frequencies. 

 
 

Complex Specific Acoustic Impedance Z(x,y) vs. Modal Frequency: 

224 Hz 328 Hz 560 Hz 1078 Hz 1504 Hz 

Figure 15. Acoustic impedance plots for the five resonances in acoustic ohms. The top row 
shows the real component, the bottom row shows the imaginary component. It can be seen 
that the imaging resolution decreases for higher frequencies. 
 

Re{Z} 

Im{Z} 
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Complex Sound Intensity I(x,y) vs. Modal Frequency: 

224 Hz 328 Hz 560 Hz 1078 Hz 1504 Hz 

Figure 16. Complex sound intensity plots for the five resonances in RMS Watts/m2, showing 
energy flow in the system. The top row is the real component, the bottom row is the imaginary 
component. 
 

Re{I} 

Im{I} 

Sound Intensity Level SIL(x,y) vs. Modal Frequency: 

224 Hz 328 Hz 560 Hz 1078 Hz 1504 Hz 

Figure 17. Sound intensity level plots for the five resonances in decibels.  
 

   SIL(x,y) = 10 log10(|I(x,y)|/Io) {dB} 

Io = 10-12 RMS Watts/m2 (Reference Sound Intensity) 
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IV.   Conclusions 
 The viola has a darker, more subdued 
timbre than the violin. It was found in the 
harmonic analysis that this corresponds to 
having relatively stronger first few over-
tones and a weaker fundamental. This 
contrast is caused by how the body of 
each instrument resonates in congruence 
to the tuning of the strings; while it is 
known that the violin has the primary air 
and wood resonances that lie on the fre-
quencies of its open strings, it was deter-
mined that they lie in between the open 
string frequencies for the viola. Using 
near-field acoustic holography, the corre-
sponding modes of vibration were exam-
ined to plot mechanical vibration, sound 
intensity, acoustic impedance, and energy 
density across the back plate of the in-
strument for five of its resonances. 
 To continue this research, many mod-
els of violas could be tested to see how 
these results stay consistent or change 
over a varying range of quality. Also, per-
forming the same experiments on other 
stringed instruments such as the violin and 

cello would allow us to directly compare 
and contrast how each of these instru-
ments resonate. 
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Acoustic Energy Density w(x,y) vs. Modal Frequency: 

224 Hz 328 Hz 560 Hz 1078 Hz 1504 Hz 

Figure 18. Acoustic energy density plots for the five resonances in RMS J/m3.  
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