Physics of Music / Physics of Musical Instruments

Steven Errede

 Professor of PhysicsThe University of Illinois at UrbanaChampaign

NSF REU Talk UIUC Physics

June 30, 2004
"Music of the Spheres" Michail Spiridonov, 1997-8

What is Sound?

Sound describes two different physical phenomena:

- Sound = A disturbance in a physical medium (gas/liquid/solid) which propagates in that medium. What is this exactly? How does this happen?
- Sound = An auditory sensation in one's ear(s)/in one's brain - what is this exactly??? How does this happen?
- Humans \& other animal species have developed the ability to hear sounds because sound(s) exist in the natural environment.
- All of our senses are a direct consequence of the existence of stimuli in the environment - eyes/light, ears/sound, tongue/taste, nose/smells, touch/sensations, balance/gravity, migratorial navigation/earth's magnetic field.
- Why do we have two ears? Two ears are the minimum requirement for spatial location of a sound source.
- Ability to locate a sound is very beneficial - e.g. for locating food \& also for avoiding becoming food....

Acoustics

- Scientific study of sound
- Broad interdisciplinary field - involving physics, engineering, psychology, speech, music, biology, physiology, neuroscience, architecture, etc....
-Different branches of acoustics:
- Physical Acoustics
- Musical Acoustics
- Psycho-Acoustics
- Physiological Acoustics
- Architectural Acoustics
- Etc...

Sound Waves

Sound propagates in a physical medium (gas/liquid/solid) as a wave, or as a sound pulse (= a collection/superposition of traveling waves)

- An acoustical disturbance propagates as a collective excitation (i.e. vibration) of a group of atoms and/or molecules making up the physical medium.
- Acoustical disturbance, e.g. sound wave carries energy, \boldsymbol{E} and momentum, \boldsymbol{P}
- For a homogeneous (i.e. uniform) medium, disturbance propagates with a constant speed, \boldsymbol{v}
- Longitudinal waves - atoms in medium are displaced longitudinally from their equilibrium positions by acoustic disturbance - i.e. along/parallel to direction of propagation of wave.
- Transverse waves - atoms in medium are displaced transversely from their equilibrium positions by acoustic disturbance - i.e. perpendicular to direction of propagation of wave.
- Speed of sound in air: $v_{\text {air }}=\sqrt{ }\left(\mathrm{B}_{\text {air }} / \rho_{\text {air }}\right) \sim 344 \mathrm{~m} / \mathrm{s}(\sim 1000 \mathrm{ft} / \mathrm{sec})$ at sea level, 20 degrees Celsius.
- Speed of sound in metal, e.g. aluminum: $v_{\mathrm{Al}}=\sqrt{ }\left(\mathrm{Y}_{\mathrm{Al}} / \rho_{\mathrm{Al}}\right) \sim 1080 \mathrm{~m} / \mathrm{s}$.
- Speed of transverse waves on a stretched string: $v_{\text {string }}=\sqrt{ }\left(\mathrm{T}_{\text {string }} / \mu_{\text {string }}\right)$ where mass per unit length of string, $\mu_{\text {string }}=M_{\text {string }} / L_{\text {string }}$

Harmonic Content of Complex Waveforms

From mathematical work (1804-1807) of Jean Baptiste Joseph Fourier (17681830), the spatial/temporal shape of any periodic waveform can be shown to be due to linear combination of fundamental \& higher harmonics!

Sound Tonal Quality - Timbre - harmonic content of sound wave
Sine/Cosine Wave: Mellow Sounding - fundamental, no higher harmonics

Triangle Wave: A Bit Brighter Sounding - has higher harmonics!

Harmonic Content of a Bipolar Triangle Wave

Asymmetrical Sawtooth Wave: Even Brighter Sounding - even more harmonics!

Square Wave: Brighter Sounding - has the most harmonics!

Standing Waves on a Stretched String

Standing wave $=$ superposition of left- and right-going traveling waves

- Left \& right-going traveling waves reflect off of end supports
- Polarity flip of traveling wave occurs at fixed end supports. No polarity flip for free ends.
- Different modes of string vibrations - resonances occur!
- For string of length L with fixed ends, the lowest mode of vibration has frequency $f_{1}=v / 2 \mathrm{~L}\left(v=f_{1} \lambda_{1}\right)$ (f in cycles per second, or $\operatorname{Hertz}(\mathrm{Hz})$)
- Frequency of vibration, $f=1 / \tau$, where $\tau=$ period $=$ time to complete 1 cycle
- Wavelength, λ_{1} of lowest mode of vibration has $\lambda_{1}=2 L$ (in meters)
- Amplitude of wave (maximum displacement from equilibrium) is A see figure below - snapshot of standing wave at one instant of time, t :

String can also vibrate with higher modes:

- Second mode of vibration of standing wave has $f_{2}=2 v / 2 L=v / L$ with $\lambda_{2}=2 L / 2=L$

- Third mode of vibration of standing wave has $f_{3}=3 v / 2 L$ with $\lambda_{3}=2 L / 3$

- The $\mathrm{n}^{\text {th }}$ mode of vibration of standing wave on a string, where $n=$ integer $=1,2,3,4,5, \ldots$ has frequency $f_{\mathrm{n}}=n(v / 2 L)=n f_{1}$, since $v=f_{\mathrm{n}} \lambda_{\mathrm{n}}$ and thus the $n^{\text {th }}$ mode of vibration has a wavelength of $\lambda_{\mathrm{n}}=(2 L) / n=\lambda_{1} / n$

When we e.g. pick (i.e. pluck) the string of a guitar, initial waveform is a triangle wave:

The geometrical shape of the string (a triangle) at the instant the pick releases the string can be shown mathematically (using Fourier Analysis) to be due to a linear superposition of standing waves consisting of the fundamental plus higher harmonics of the fundamental! Depending on where pick along string, harmonic content changes. Pick near the middle, mellower (lower harmonics); pick near the bridge - brighter - higher harmonics emphasized!

Harmonic Content of a Sawtooth Wave

What is Music?

- An aesthetically pleasing sequence of tones?
- Why is music pleasurable to humans?
- Music has always been part of human culture, as far back as we can tell
- Music important to human evolution?
- Memory of music much better (stronger/longer) than "normal" memory! Why? How?
- Music shown to stimulate human brain activity
- Music facilitates brain development in young children and in learning
- Music/song is also important to other living creatures - birds, whales, frogs, etc.
- Many kinds of animals utilize sound to communicate with each other
- What is it about music that does all of the above ???

Human Development of Musical Instruments

- Emulate/mimic human voice (some instruments much more so than others)!
- Sounds from musical instruments can evoke powerful emotional responses - happiness, joy, sadness, sorrow, shivers down your spine, raise the hair on back of neck, etc.

Musical Instruments

- Each musical instrument has its own characteristic sounds - quite complex!
- Any note played on an instrument has fundamental + harmonics of fundamental.
- Higher harmonics - brighter sound
- Less harmonics - mellower sound
- Harmonic content of note can/does change with time:
- Takes time for harmonics to develop - "attack" (leading edge of sound)
- Harmonics don't decay away at same rate (trailing edge of sound)
- Higher harmonics tend to decay more quickly
- Sound output of musical instrument is not uniform with frequency
- Details of construction, choice of materials, finish, etc. determine resonant structure (formants) associated with instrument - mechanical vibrations!
- See harmonic content of guitar, violin, recorder, singing saw, drum, cymbals, etc.
- See laser interferogram pix of vibrations of guitar, violin, handbells, cymbals, etc.

Vibrational Modes of a Violin

Figure 10.14. Time-average holographic interferograms of a free violin top plate and back plate (Hutchins et al., 1971).

Harmonic Content of a Violin:

Freshman Students, UIUC Physics 199 POM Course, Fall Semester, 2003

Harmonic Content of a Viola - Open A2

Laura Book (Uni High, Spring Semester, 2003)

Viola Open A2 Volts**2 vs. Frequency

Harmonic Content of a Cello:

Freshman Students, UIUC Physics 199 POM Course, Fall Semester, 2003

Vibrational Modes of an Acoustic Guitar

Figure 9.16. Time-averaged holographic interferograms of top-plate modes of a guitar (Guitar BR11). The resonant frequencies and Q values of each mode are shown below the interferograms (Richardson and Roberts, 1985).

Resonances of an Acoustic Guitar

Figure 9.20. Mechanical frequency response and sound spectrum 1 m in front of a Martin D-28 folk guitar driven by a sinusoidal force of 0.15 N applied to the treble side of the bridge. Solld curve, sound spectrum; dashed curves, acceleration level at the driving point.

Harmonic Content of 1969 Gibson ES-175 Electric Guitar

Jacob Hertzog (Uni High, Spring Semester, 2003)

1969 ES-175 A 10th Fret Volts**2 vs. Frequency

Musical Properties of a 1954 Fender Stratocaster, S/N 0654 (August, 1954):

Measuring Mechanical Vibrational Modes of 1954 Fender Stratocaster:

Mechanical Vibrational Modes of 1954 Fender Stratocaster:

E4 $=329.63 \mathrm{~Hz}$ (High E)
$B 3=246.94 \mathrm{~Hz}$
G3 $=196.00 \mathrm{~Hz}$
D3 $=146.83 \mathrm{~Hz}$
$\mathrm{A} 2=110.00 \mathrm{~Hz}$
$\mathbf{E} 2=82.407 \mathrm{~Hz}($ Low $\mathbf{E})$

UIUC Physics 398EMI Test Stand for Measurement of Electric Guitar Pickup Properties:

Comparison of Vintage (1954's) vs. Modern Fender Stratocaster Pickups:

Comparison of Vintage (1950's) vs. Modern Gibson P-90 Pickups:

SME \& Richard Keen, UIUC Veterinary Medicine, Large Animal Clinic

Study/Comparison of Harmonic Properties of Acoustic and Electric Guitar Strings Ryan Lee (UIUC Physics P398EMI, Fall 2002)

Harmonic Content of a Conn 8-D French Horn: Middle-C (C4)

Chris Orban UIUC Physics Undergrad, Physics 398EMI Course, Fall Semester, 2002

Harmonic Content of a Trombone:

Freshman Students in UIUC Physics 199 POM Class, Fall Semester

Comparison of Harmonic Content of Metal, Glass and Wooden Flutes:

Freshman Students in UIUC Physics 199 POM Class, Fall Semester, 2003

Class Flute C5if $A^{* *} 2$ vs Frequency

Wood Flute Open C6"
$A^{+\prime 2} 2$ vs Frequency

Harmonic Content of a Clarinet:

Freshman Students in UIUC Physics 199 POM Class, Fall Semester

Harmonic Content of an Oboe:

Freshman Students in UIUC Physics 199 POM Class, Fall Semester, 2003

Harmonic Content of a Tenor Sax:

Freshman Students in UIUC Physics 199 POM Class, Fall Semester, 2003

Harmonic Content of an Alto Sax:

Freshman Students in UIUC Physics 199 POM Class, Fall Semester, 2003

Harmonic Content of the Bassoon:

Prof. Paul Debevec, SME, UIUC Physics Dept. Fall Semester, 2003

Bassoon Concert Bb (B4b)
$\mathrm{A}^{* *} 2$ vs Frequency

Bassoon B3b
$\mathrm{A}^{* *} 2$ vs Frequency

Bassoon B5b
$\mathrm{A}^{\mu} 2 \mathrm{vs}$ Frequency

Time-Dependence of the Harmonic Content of Marimba and Xylophone:

Roxanne Moore, Freshman in UIUC Physics 199 POM Course, Spring Semester, 2003

Vibrational Modes of Membranes and Plates

(Drums and Cymbals)

Figure 3.8. Vibrational modes of circular plates: (a) free edge and (b) clamped or simply supported edge. The mode number (n, m) gives the number of nodal diameters and circles, respectively.

Study/Comparison of Acoustic Properties of Tom Drums

Eric Macaulay (Illinois Wesleyan University), Nicole Drummer, SME (UIUC) Dennis Stauffer (Phattie Drums)

Eric
Macaulay
(Illinois Wesleyan University)

NSF REU
Summer Student @ UIUC Physics, 2003

Investigated/Compared Bearing Edge Design - Energy Transfer from Drum Head => Shell of Three "identical" 10" Diameter Tom Drums

Differences in Bearing Edge Design of Tom Drums (Cutaway View):

Single $\mathbf{4 5}^{\circ}$
Rounded 45° (Classic)
and Double 45° (Modern)

Recording Sound(s) from Drum Head vs. Drum Shell:

Analysis of Recorded Signal(s) From 10" Tom Drum(s):
 \{Shell Only Data (Shown Here) \}

Progression of Major Harmonics for Three 10" Tom Drums

Harmonics 1-5: Shell Only vs. Shell+Lugs vs. Everything (All @ T=75)
Shell A
Shell B
Shell C

Ratio of Initial Amplitude(s) of Drum Shell/Drum Head vs. Drum Head Tension.
Drum A = Single 45 ${ }^{\circ}$, Drum B = Round-Over 45 ${ }^{\circ}$, Drum C = Double-45 ${ }^{\circ}$.
At Resonance, the Double- $45^{\circ} 10$ " Tom Drum transferred more energy from drum head => drum shell. Qualitatively, it sounded best of the three.
(Shell $Y(0)) /(H e a d Y(0))$ vs Drum Dial Tension

Harmonic Content vs. Time of a Snare Drum

Eric Macaulay (Illinois Wesleyan University), Lee Holloway, Mats Selen, SME (UIUC), Summer 2003

Harmonic Content vs. Time of Tibetan Bowl

Eric Macaulay (Illinois Wesleyan University), Lee Holloway, Mats Selen, SME (UIUC) Summer, 2003

Tibetan Bowl Studies - Continued:

Tibetan Bowl Studies II: Joseph Yasi (Rensselaer Polytechnic), SME (UIUC) Summer, $2004=>$ Preliminary Results $<=$

Frequency \& phases of harmonics (even the fundamental) of Tibetan Bowl are not constants !!!

Tibetan Bowl
Amplitude^2 vs Frequency

Beats Phenomenon

Linearly superpose (i.e. add) two signals $A_{1}(t)$ and $A_{2}(t)$ with similar frequencies, $\omega_{2} \sim \omega_{1}$.

$$
\begin{array}{cc}
A_{1}(t)=A_{10} \operatorname{Cos}\left(\omega_{1}(t) t\right) & A_{2}(t)=A_{20} \operatorname{Cos}\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right) \\
A_{\text {tot }}(t)=A_{1}(t)+A_{2}(t)=A_{10} \operatorname{Cos}\left(\omega_{1}(t) t\right)+A_{20} \operatorname{Cos}\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right)
\end{array}
$$

Phasor Relation:

Intensity:

$$
\begin{aligned}
& I_{t o t}(t)=\left|A_{\text {tot }}(t)\right|^{2}=\left|A_{1}(t)+A_{2}(t)\right|^{2} \\
& I_{t o t}(t)=A_{10}^{2} \operatorname{Cos}^{2}\left(\omega_{1}(t) t\right)+A_{20}^{2} \operatorname{Cos}^{2}\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right)+2 A_{10} A_{20} \operatorname{Cos}\left(\omega_{1}(t) t\right) \operatorname{Cos}\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right)
\end{aligned}
$$

Define:
Identity:

$$
\vartheta_{1}(t) \equiv \omega_{1}(t) t \quad \vartheta_{2}(t) \equiv\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right)
$$

Thus

$$
\operatorname{Cos} \vartheta_{1} \operatorname{Cos} \vartheta_{2} \equiv \frac{1}{2}\left[\operatorname{Cos}\left(\vartheta_{2}+\vartheta_{1}\right)+\operatorname{Cos}\left(\vartheta_{2}-\vartheta_{1}\right)\right]
$$

$$
\begin{aligned}
& I_{t o t}(t)=A_{10}^{2} \operatorname{Cos}^{2}\left(\omega_{1}(t) t\right)+A_{20}^{2} \operatorname{Cos}^{2}\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right) \\
& +A_{10} A_{20}\left[\operatorname{Cos}\left(\left(\omega_{2}(t)+\omega_{1}(t)\right) t+\Delta \varphi_{21}(t)\right)+\operatorname{Cos}\left(\left(\omega_{2}-\omega_{1}\right) t-\Delta \varphi_{21}(t)\right)\right]
\end{aligned}
$$

Define:

$$
\Omega_{21}(t) \equiv\left(\omega_{2}(t)+\omega_{1}(t)\right) \quad \Delta \omega_{21}(t) \equiv\left|\omega_{2}(t)-\omega_{1}(t)\right|
$$

Then:

$$
I_{t o t}(t)=A_{10}^{2} \operatorname{Cos}^{2}\left(\omega_{1}(t) t\right)+A_{20}^{2} \operatorname{Cos}^{2}\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right)+A_{10} A_{20}\left[\operatorname{Cos}\left(\Omega_{21}(t) t+\Delta \varphi_{21}(t)\right)+\operatorname{Cos}\left(\Delta \omega_{21}(t) t-\Delta \varphi_{21}(t)\right)\right]
$$

Identity:
Then:

$$
\operatorname{Cos}^{2} \vartheta=\operatorname{Cos} \vartheta \operatorname{Cos} \vartheta \equiv \frac{1}{2}[\operatorname{Cos} 0+\operatorname{Cos} 2 \vartheta]=\frac{1}{2}[1+\operatorname{Cos} 2 \vartheta]
$$

$$
\begin{aligned}
& I_{t o t}(t)=\frac{1}{2} A_{10}^{2}\left[1+\operatorname{Cos}^{2} 2\left(\omega_{1}(t) t\right)\right]+\frac{1}{2} A_{20}^{2}\left[1+\operatorname{Cos}^{2} 2\left(\omega_{2}(t) t+\Delta \varphi_{21}(t)\right)\right] \\
& +A_{10} A_{20}\left[\operatorname{Cos}\left(\Omega_{21}(t) t+\Delta \varphi_{21}(t)\right)+\operatorname{Cos}\left(\Delta \omega_{21}(t) t-\Delta \varphi_{21}(t)\right)\right]
\end{aligned}
$$

Vibrational Modes of Cymbals:

Vibrational Modes of Handbells:

Figure 21.16. Time-average hologram interferograms of vibrational modes in a C_{5} handbell (Rossing et al., 1984).

Modal Vibrations of a "Singing" Rod:

A metal rod (e.g. aluminum rod) a few feet in length can be made to vibrate along its length - make it "sing" at a characteristic, resonance frequency by holding it precisely at its mid-point with thumb and index finger of one hand, and then pulling the rod along its length, toward one of its ends with the thumb and index finger of the other hand, which have been dusted with crushed violin rosin, so as to obtain a good grip on the rod as it is pulled.

Decay of Fundamental Mode of Singing Rod:

Amplitude vs. Time
Fundamental of Vibrating Rod @f1 $=1670 \mathrm{~Hz}$

Of course, there also exist higher modes of vibration of the singing rod:

Third Harmonic, $n=3$
Longitudinal Displacement from
Equilibrium Position, $d(x)$

- See singing rod demo...
- If the singing rod is rotated - can hear Doppler effect $\&$ beats:

- Frequency of vibrations raised (lowered) if source moving toward (away from) listener, respectively
- Hear Doppler effect \& beats of rotating "singing" rod...

- Would Mandi Patrick (UIUC Feature Twirler) be willing to lead the UI Singing Rod Marching Band at a half-time show ???

How Do Our Ears Work?

- Sound waves are focussed into the ear canal via the ear flap (aka pinna), and impinge on the ear drum. Folds in pinna for enhancing determination of location of sound source!
- Ossicles in middle ear - hammer/anvil/stirrup - transfer vibrations to oval window membrane on cochlea, in the inner ear.
- Cochlea is filled with perilymph fluid, which transfers sound vibrations into Cochlea.
- Cochlea contains basilar membrane which holds $\sim 30,000$ hair cells in Organ of Corti.
- Sensitive hairs respond to the sound vibrations - preserve both amplitude and phase information - send signals to brain via auditory nerve.
- Brain processes audio signals from both ears - you hear the "sound"
- Human hearing response is \sim logarithmic in sound intensity/loudness.

Our Hearing - Pitch-Wise is not Perfectly Linear, Either:

Deviation of Tuning from Tempered Scale Prediction

A perfectly tuned piano (tempered scale) would sound flat in the upper register and sound sharp in the lower register

Consonance \& Dissonance

Ancient Greeks - Aristotle and his followers - discovered using a Monochord that certain combinations of sounds with rational number $(\mathrm{n} / \mathrm{m})$ frequency ratios were pleasing to the human ear, for example (in Just Diatonic Scale):

- Unison - 2 simple-tone sounds of same frequency, i.e. $f_{2}=(1 / 1) f_{1}=f_{1}(=$ e.g. 300 Hz$)$
- Minor Third - 2 simple-tone sounds with $f_{2}=(6 / 5) f_{1}=1.20 f_{1}(=$ e.g. 360 Hz)
- Major Third - 2 simple-tone sounds with $f_{2}=(5 / 4) f_{1}=1.25 f_{1}(=$ e.g. 375 Hz$)$
- Fourth -2 simple-tone sounds with $f_{2}=(4 / 3) f_{1}=1.333 f_{1}(=$ e.g. 400 Hz$)$
- Fifth - 2 simple-tone sounds with $f_{2}=(3 / 2) f_{1}=1.50 f_{1}(=$ e.g. 450 Hz$)$
- Octave - one sound is $2^{\text {nd }}$ harmonic of the first - i.e. $f_{2}=(2 / 1) f_{1}=2 f_{1}(=$ e.g. 600 Hz$)$
- Also investigated/studied by Galileo Galilei, mathematicians Leibnitz, Euler, physicist Helmholtz, and many others - debate/study is still going on today...
- These 2 simple-tone sound combinations are indeed very special!
- The resulting, overall waveform(s) are time-independent - they create standing waves on basilar membrane in cochlea of our inner ears!!!
- The human brain's signal processing for these special 2 simple-tone sound consonant combinations is especially easy!!!

A2(0)-A20 $\operatorname{Sin}^{2}(w 24)$ v8. $A 4(t)-A 16 \operatorname{Sin}\left(w 1^{14}\right)$

Example:

Consonance of Unison

Two simple-tone signals with:
$f_{2}=(1 / 1) f_{1}=1 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=300 \mathrm{~Hz}$)

Example:

Consonance of Second

Two simple-tone signals with:
$f_{2}=(9 / 8) f_{1}=1.125 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $\left.f_{2}=337.5 \mathrm{~Hz}\right)$

Atot $(t)=A 1\left(w^{*} t\right)+A 2\left(w 2^{*}\right)$ vs. $\left(w^{*} t\right)$
$A 20=A 10=1.0, \mathrm{f} 2 \pi 1=9 / 8=1.125000$

Prof. Steve Errede, UIUC Physics

Example:

Consonance of Minor 3rd

Two simple-tone signals with:
$f_{2}=(6 / 5) f_{1}=1.20 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=360 \mathrm{~Hz}$)

Atot (t) $=A_{1}\left(w_{1} 1^{2}\right)+A_{2}\left(\right.$ w $\left.^{2} T\right)$ us. $\left(w^{1} t\right)$

—Atoliti) 一 Atot(h)

Example:

Consonance of Major 3rd

Two simple-tone signals with:
$f_{2}=(5 / 4) f_{1}=1.25 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=375 \mathrm{~Hz}$)

Example:

Consonance of Fourth

Two simple-tone signals with:
$f_{2}=(4 / 3) f_{1}=1.333 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=400 \mathrm{~Hz}$)

A50-A18-10.7271-43-4.333333

$\mathbf{A} 2(t)=\mathbf{A} 20^{*} \operatorname{Sin}\left(\mathbf{w}^{*} t\right)$ us. $\mathbf{A 1}(\mathrm{t})=\mathbf{A 1 0}{ }^{*} \operatorname{Sin}\left(\mathbf{w}^{*} *\right)$

Example:

Consonance of Fifth

Two simple-tone signals with:
$f_{2}=(3 / 2) f_{1}=1.5 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=450 \mathrm{~Hz}$)

Atot(t) $=A 1\left(w^{*} t\right)+A 2\left(w^{*} t\right)$ vs. $\left(w^{*} t\right)$
$\mathrm{A} 20=\mathrm{A} 10=1.0, \mathrm{f} 2 \mathrm{f} 1=3 / 2=1.500000$

Prof. Steve Errede, UIUC Physics

Example:

Consonance of Sixth

Two simple-tone signals with:
$f_{2}=(5 / 3) f_{1}=1.666 f_{1}$ (e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=500 \mathrm{~Hz}$)

Example:

Consonance of Seventh

Two simple-tone signals with:
$f_{2}=(15 / 8) f_{1}=1.875 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=562.5 \mathrm{~Hz}$)

Example:

Consonance of Octave
Two simple-tone signals with:
$f_{2}=(2 / 1) f_{1}=2 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=600 \mathrm{~Hz}$)

Example:

Consonance of $1^{\text {st }}$

 \& $3^{\text {rd }}$ HarmonicsTwo simple-tone signals with:
$f_{2}=(3 / 1) f_{1}=3 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $\left.f_{2}=900 \mathrm{~Hz}\right)$

$\left.A \operatorname{tot}(4)-A 1(w 14)+A 2(w)^{2}\right)$ 48. $(w 14)$
$\mathrm{A} 20=\mathrm{A} 10=1.0, \mathrm{~A} 2 \pi=31=3.0000000$

Example:

Consonance of $1^{\text {st }} \boldsymbol{\&} 4^{\text {th }}$ Harmonics

Two simple-tone signals with:
$f_{2}=(4 / 1) f_{1}=4 f_{1}$
(e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=1200 \mathrm{~Hz}$)

- Mitoty - Altat

Prof. Steve Errede, UIUC Physics

Example:

Consonance of $1^{\text {st }}$

 \& 5 ${ }^{\text {th }}$ HarmonicsTwo simple-tone signals with:

$f_{2}=(5 / 1) f_{1}=5 f_{1}$ (e.g. $f_{1}=300 \mathrm{~Hz}$
and $f_{2}=1500 \mathrm{~Hz}$)

Consonance of

Harmonics

Just Diatonic Scale

Fundamental Frequency,

$$
f_{0}=100 \mathrm{~Hz}
$$

	Unison	Second	???	???	$\begin{array}{\|c\|} \hline \text { Minor } \\ \text { 3rd } \end{array}$	$\begin{array}{\|c\|} \hline \text { Major } \\ \text { 3rd } \\ \hline \end{array}$	Fourth	Fifth	Sixth	Seventh	
Harmonic	C-C	D-C	???-C	???-C	$\mathrm{E}_{\mathrm{b}}-\mathrm{C}$	E-C	F-C	G-C	A-C	B-C	C-C
H	1:1	9:8	8:7	7:6	6:5	5:	4:3	3:2	5:	15:8	2.
1	100.0	112.5	114.3	116.7	120.0	125.0	133.3	150.0	166.7	187.5	200.0
2	200.0	225.0	228.6	233.3	240.0	250.0	266.7	300.0	333.3	375.0	400.0
3	300.0	337.5	342.9	350.0	360.0	375.0	400.0	450.0	500.0	562.5	600.0
4	400.0	450.0	457.1	466.7	480.0	500.0	533.3	600.0	666.7	750.0	800.0
5	500.0	562.5	571.4	583.3	600.0	625.0	666.7	750.0	833.3	937.5	1000.0
6	600.0	675.0	685.7	700.0	720.0	750.0	800.0	900.	1000.0	1125.0	1200.0
7	700.0	787.	800.0	816.7	840.0	875.0	933.3	1050.	1166.7	1312.5	1400.0
8	800.0	900.0	914.3	933.3	960.0	1000.0	1066.7	1200.0	1333.3	1500.0	1600.0
9	900.0	1012.5	1028.6	1050.0	1080.0	1125.0	1200.0	1350.0	1500.0	1687.5	1800.0
10	1000.0	1125.0	1142.9	1166.7	1200.0	1250.0	1333.3	1500.0	1666.7	1875.0	2000.0
11	1100.0	1237.5	1257.1	1283.3	1320.0	1375.0	1466.7	1650	1833.3	2062.5	2200.0
12	1200.0	1350.0	1371.4	1400	1440.0	1500.0	1600.0	1800	2000.0	2250.0	2400.0
13	1300.0	1462.5	1485.7	1516.7	1560.0	1625.0	1733.3	1950	166.7	2437.5	d
14	1400.0	1575.0	1600.0	1633.3	1680.0	1750.0	1866.7	2100	2333.3	2625.0	2800.0
15	1500.0	1687.5	1714.3	1750.0	1800.0	1875.0	2000.	2250	2500.0	2812.5	3000.0
16	1600.0	1800.0	1828.6	1866.7	1920.0	2000.0	2133.3	2400.	2666.7	3000.0	3200.0
17	1700.0	1912.5	1942.9	1983.3	2040.0	2125.0	2266.	2550	2833.3	3187.5	3400.0
18	1800.0	2025.0	2057.1	2100.0	2160.0	2250.0	2400.0	2700.0	3000.0	3375.0	3600.0
19	1900.0	2137.5	2171.4	2216.7	2280.0	2375.0	2533.	2850.	3166.7	3562.5	3800.0
20	2000.0	2250.0	2285.7	2333.3	2400.0	2500.0	2666.7	3000.0	3333.3	3750.0	4000.0
21	2100.0	2362.5	2400.0	2450.0	2520.0	2625.0	2800.0	3150.0	3500.0	3937.5	4200.0
22	2200.0	2475.0	2514.3	2566	2640.	2750.0	2933.3	3300	3666.7	4125.0	4400.0
23	2300.0	2587.	2628.6	2683	2760.	2875.0	3066.	3450	3833.3	4312.5	4600.0
24	2400.0	2700.0	2742.9	2800.0	2880.0	3000.0	3200.	3600.	4000.0	4500.0	4800.0
25	2500.0	2812.5	2857.1	2916.7	3000.0	3125.0	3333.3	3750.0	4166.7	4687.5	5000.0
26	2600.0	2925.0	2971.4	3033.3	3120.0	3250.0	3466.7	3900.0	4333.3	4875.0	5200.0
27	2700.0	3037.5	3085.7	3150.0	3240.0	3375.0	3600.0	4050.0	4500.0	5062.5	5400.0
28	2800.0	3150.0	3200.0	3266.7	3360.0	3500.0	3733.3	4200.0	4666.7	5250.0	5600.0
29	2900.0	3262.5	3314.3	3383.3	3480.0	3625.0	3866.7	4350.0	4833.3	5437.5	5800.0
30	3000.0	3375.0	3428.6	3500.0	3600.0	3750.0	4000.0	4500.0	5000.0	5625.0	6000.0
31	3100.0	3487.5	3542.9	3616.7	3720.0	3875.0	4133.3	4650.0	5166.7	5812.5	6200.0
32	3200.0	3600.0	3657.	3733.3	3840.0	4000.0	4266.7	88	5333.3	6000.0	6400.0

Dissonance of Harmonics

Just Diatonic Scale

Fundamental Frequency,

$\mathrm{f}_{\mathbf{0}}=100 \mathrm{~Hz}$

	Unison	Second	???	???	$\begin{array}{\|c\|} \hline \text { Minor } \\ \text { 3rd } \end{array}$	$\begin{array}{\|c\|} \hline \text { Major } \\ \text { 3rd } \end{array}$	Fourth	Fifth	Sixth	Seventh	Octave
Harmonic	C-C	D-C	???-C	???-C	$\mathrm{E}_{\mathrm{b}}-\mathrm{C}$	E-C	F-C	G-C	A-C	B-C	C-C
\#	1:1	9:8	8:7	7:6	6:5	5:4	4:3	3:2	5:3	15:8	2:1
1	100.0	112.5	114.3	116.7	120.0	125.0	133.3	150.0	166.7	187.5	200.0
2	200.0	225.0	228.6	233.3	240.0	250.0	266.7	300.0	333.3	375.0	400.0
3	300.0	337.5	342.9	350.0	360.0	375.0	400.0	450.0	500.0	562.5	600.0
4	400.0	450.0	457.1	466.7	480.0	500.0	533.3	600.0	666.7	750.0	800.0
5	500.0	562.5	571.4	583.3	600.0	625.0	666.7	750.0	833.3	937.5	1000.0
6	600.0	675.0	685.7	700.0	720.0	750.0	800.0	900.0	1000.0	1125.0	1200.0
7	700.0	787.5	800.0	816.7	840.0	875.0	933.3	1050.0	1166.7	1312.5	1400.0
8	800.0	900.0	914.3	933.3	960.0	1000.0	1066.7	1200.0	1333.3	1500.0	1600.0
9	900	1012.5	1028.6	1050.0	1080.0	1125.0	1200.0	1350.0	1500.0	1687.5	1800.0
10	1000.0	1125.0	1142.9	1166.7	1200.0	1250.0	1333.3	1500.0	1666.7	1875.0	2000.0
11	1100.0	1237.5	1257.1	1283.3	1320.0	1375.0	1466.7	1650.0	1833.3	2062.5	2200.0
12	1200	1350.0	1371.4	1400.0	1440.0	1500.0	1600.0	1800.0	2000.0	2250.0	2400.0
13	1300.0	1462.5	1485.7	1516.7	1560.0	1625.0	1733.3	1950.0	2166.7	2437.5	2600.0
14	1400.0	1575.0	1600.0	1633.3	1680.0	1750.0	1866.7	2100.0	2333.3	2625.0	2800.0
15	1500.0	1687.5	1714.3	1750.0	1800.0	1875.0	2000.0	2250.0	2500.0	2812.5	3000.0
16	1600.0	1800.0	1828.6	1866.7	1920.0	2000.0	2133.3	2400.0	2666.7	3000.0	3200.0
17	1700.	1912.5	1942.9	1983.3	2040.0	2125.0	2266.7	2550.0	2833.3	3187.5	3400.0
18	1800.0	2025.0	2057.1	2100.0	2160.0	2250.0	2400.0	2700.0	3000.0	3375.0	3600.0
19	1900.0	2137.5	2171.4	2216.7	2280.0	2375.0	2533.3	2850.0	3166.7	3562.5	3800.0
20	2000.0	2250.0	2285.7	2333.3	2400.0	2500.0	2666.7	3000.0	3333.3	3750.0	4000.0
21	2100.0	2362.5	2400.0	2450.0	2520.0	2625.0	2800.0	3150.0	3500.0	3937.5	4200.0
22	2200.0	2475.0	2514.3	2566.7	2640.0	2750.0	2933.3	3300.0	3666.7	4125.0	4400.0
23	2300.0	2587.5	2628.6	2683.3	2760.0	2875.0	3066.7	3450.0	3833.3	4312.5	4600.0
24	2400.0	2700.0	2742.9	2800.0	2880.0	3000.0	3200.0	3600.0	4000.0	4500.0	4800.0
25	2500.0	2812.5	2857.1	2916.7	3000.0	3125.0	3333.3	3750.0	4166.7	4687.5	5000.0
26	2600.0	2925.0	2971.4	3033.3	3120.0	3250.0	3466.7	3900.0	4333.3	4875.0	5200.0
27	2700.0	3037.5	3085.7	3150.0	3240.0	3375.0	3600.0	4050.0	4500.0	5062.5	5400.0
28	2800.0	3150.0	3200.0	3266.7	3360.0	3500.0	3733.3	4200.0	4666.7	5250.0	5600.0
29	2900.0	3262.5	3314.3	3383.3	3480.0	3625.0	3866.7	4350.0	4833.3	5437.5	5800.0
30	3000.0	3375.0	3428.6	3500.0	3600.0	3750.0	4000.0	4500.0	5000.0	5625.0	6000.0
31	3100.0	3487.5	3542.9	3616.7	3720.0	3875.0	4133.3	4650.0	5166.7	5812.5	6200.0
32	3200.0	3600.0	3657.1	3733.3	3840.0	4000.0	4266.7	4800.0	5333.3	6000.0	6400.0

Harmonic Amplitudes for Unison: C \& C (Frequency Ratio 1:1) Savtooth Waveforms, fo $=100 \mathrm{~Hz}$, First 32 Harmonics

$+\mathrm{C}=\mathrm{C}$

Harmonic Amplitudes for ??? \& C (Frequency Ratio 8:7)
Sawtooth Waveforms, $\mathrm{fo}=100 \mathrm{~Hz}$, First 32 Harmonics

Harmonic Amplitudes for Second: D \& C (Frequency Ratio 9:8)
Sawtooth Waveforms, $\mathrm{fo}=\mathbf{1 0 0 ~ H z}$, First $\mathbf{3 2}$ Harmonics

$+C=D$

Harmonic Amplitudes for ??? \& C (Frequency Ratio 7:6) Sawtooth Waveforms, fo $=100 \mathrm{~Hz}$, First 32 Harmonics

$+C=7: 6$

Harmonic Amplitudes for Second: D \& C (Frequency Ratio 9:8) Sawtooth Waveforms, fo $\mathbf{= 1 0 0 ~ H z}$, First $\mathbf{3 2}$ Harmonics

$$
+C=D
$$

Harmonic Amplitudes for Major 3rd: E \& C (Frequency Ratio 5:4) Sawt ooth Waveforms, fo $=100 \mathrm{~Hz}$, First $\mathbf{3 2}$ Harmonics

Harmonic Amplitudes for Minor 3rd: Eb \& C (Frequency Ratio 6:5) Sawtooth Waveforms, fo = 100 Hz , First 32 Harmonics

Harmonic Amplitudes for Fourth: F \& C (Frequency Ratio 4:3) Sawtooth Waveforms, fo $=100 \mathrm{~Hz}$, First 32 Harmonics

Harmonic Amplitudes for Fifth: G \& C (Frequency Ratio 3:2)
Sawtooth Waveforms, fo $=100 \mathrm{~Hz}$, First 32 Harmonics

$+C \cdot G$

Harmonic Amplitudes for Seventh: B \& C (Frequency Ratio 15:8) Sawtooth Waveforms, fo $=\mathbf{1 0 0 ~ H z}$, First $\mathbf{3 2}$ Harmonics

Harmonic Amplitudes for Sixth: A \& C (Frequency Ratio 5:3)
Sawtooth Waveforms, fo $=100 \mathrm{~Hz}$, First 32 Harmonics

$+\mathrm{C}=\mathrm{A}$

Harmonic Amplitudes for Octave: C \& C (Frequency Ratio 2:1) Sawtooth Waveforms, fo $=100 \mathrm{~Hz}$, First 32 Harmonics

Fractal Music

Lorentz's Butterfly - Strange Attractor

Iterative Equations:
$\mathrm{dx} / \mathrm{dt}=10(\mathrm{y}-\mathrm{x})$
$\mathrm{dy} / \mathrm{dt}=\mathrm{x}(28-\mathrm{z})-\mathrm{y}$
$\mathrm{dz} / \mathrm{dt}=\mathrm{xy}-8 \mathrm{z} / 3$.

Initial Conditions:
Change of $t=0.01$ and
the initial values
$\mathrm{x} 0=2, \mathrm{y} 0=3$ and $\mathrm{z} 0=5$

Fractal Music

The Sierpinski Triangle
is a fractal structure with fractal dimension 1.584.

The area of a Sierpinski Triangle is ZERO!

3-D Sierpinski Pyramid

Beethoven's Piano Sonata no. 15, op. 28, 3rd Movement (Scherzo) is a combination of binary and ternary units iterating on diminishing scales, similar to the Sierpinski Structure !!!

Fractal Music in Nature - chaotic dripping of a leaky water faucet!

Convert successive drop time differences and drop sizes to frequencies
Play back in real-time (online!) using FG - can hear the sound of chaotic dripping!

Conclusions and Summary:

- Music is an intimate, very important part of human culture
- Music is deeply ingrained in our daily lives - it's everywhere!
- Music constantly evolves with our culture - affected by many things
- Future: Develop new kinds of music...
- Future: Improve existing \& develop totally new kinds of musical instruments...
- There's an immense amount of physics in music - much still to be learned !!!
- Huge amount of fun - combine physics \& math with music - can hear/see/touch/feel/think!!

MUSIC

 Be a Part of It - Participate !!!

 Be a Part of It - Participate !!!
 Enjoy It !!!

Support It !!!

For additional info on Physics of Music at UIUC - see e.g.

Physics 199 Physics of Music Web Page:

http://wug.physics.uiuc.edu/courses/phys199pom/

Physics 398 Physics of Electronic Musical Instruments Web Page:

http://wug.physics.uiuc.edu/courses/phys398emi/

