Single Slit Diffraction in 1-Dimension - Simplest Theory

In this example, we show plots of the sound intensity vs. angle and observer/listener position $y_{\text {screen }}$ on a screen for the simplest theory of Fraunhofer diffraction through an infinitely long, horizontal single slit of vertical width a. The observer/listener is located far from the slit, at a perpendicular distance $L(m)$ away, such that the conditions $a \ll L$.and. $\lambda \ll L$ both hold simultaneously, where $\lambda(m)$ is the wavelength of the sound - this is the so-called "far-field" limit.

The expression for 1-D single-slit diffraction in this simplest theory is given by (see P406POM Lecture Notes P406POM_Lect3_Part2):

$$
I_{\text {tot }}(\theta)=I_{o}\left\{\frac{\sin \delta(\theta)}{\delta(\theta)}\right\}^{2} \equiv I_{o} \operatorname{sinc}^{2} \delta \text { and } \operatorname{SIL}(\theta) \equiv 10 \log _{10}\left(I_{\text {tot }}(\theta) / I_{\text {ref }}\right)(d B)
$$

where $I_{o}\left(\right.$ Watts $\left./ m^{2}\right)$ is the maximum sound intensity associated with the single slit, the phase $\delta(\theta)=(\pi a / \lambda) \sin \theta$ (radians) $\cdot I_{\text {ref }} \equiv 10^{-12}\left(\mathrm{Watts} / \mathrm{m}^{2}\right)$ is the reference sound intensity for the sound intensity level (SIL).

Diffraction minima (intensity zeroes) occur when $\delta=(\pi a / \lambda) \sin \theta= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots= \pm m \pi$, $m=1,2,3, \ldots$.

The corresponding location of the observer's/listener's position $y_{\text {screen }}$ on a screen located a perpendicular distance L away from the sound source is: $y_{\text {screen }}=L \tan \theta$, or conversely:
$\theta=\tan ^{-1}\left(y_{\text {screen }} / L\right)$.
We coded up the above formulas using MATLAB to make plots of $I_{\text {tot }} v s . \theta$ and $I_{\text {tot }} v s . y_{\text {screen }}$ e.g. for $a=0.1$ and 1.0 m , with the following parameter values: $I_{o}=1 \mathrm{Watt} / \mathrm{m}^{2}$, observer/listener distance (at $\theta=0$) of $L=10 \mathrm{~m}$, the speed of propagation in free air/great-wide open: $v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ and frequency of $f=1000 \mathrm{~Hz}$, thus $\lambda=v_{\text {air }} / f=0.345 \mathrm{~m}$.

In the following figures, note that the angular width of the central maxima decreases as the slit width a increases, since the phase difference $\delta(\theta)=(\pi a / \lambda) \sin \theta$ is linearly proportional to a. Note also that the angular width of the central maxima decreases linearly with increasing frequency f, since the phase difference increases linearly with frequency:

$$
\delta(\theta)=(\pi a / \lambda) \sin \theta=\left(\pi a f / v_{\text {air }}\right) \sin \theta .
$$

Linear and Semilog Plots of $I_{\text {tot }} v s$. θ for $a=0.1 \mathrm{~m}$:

-2-

Linear and Semilog Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $a=0.1 \mathrm{~m}$:

-3-

Plots of $\operatorname{SIL}(\theta)$ vs. θ and SIL vs. $y_{\text {screen }}$ for $a=0.1 \mathrm{~m}$:

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

Linear and Semilog Plots of $I_{\text {tot }} v s . \theta$ for $a=1.0 \mathrm{~m}$:

-5-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Linear and Semilog Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $a=1.0 \mathrm{~m}$:

-6-

Plots of $\operatorname{SIL}(\theta)$ vs. θ and SIL vs. $y_{\text {screen }}$ for $a=1.0 \mathrm{~m}$:

-7-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Polar plot of $\operatorname{SIL}(\theta)$ vs. θ for $a=0.1 \mathrm{~m}$:

theta (degrees)
Polar plot of $\operatorname{SIL}(\theta) v s . \theta$ for $a=1.0 \mathrm{~m}$:

theta (degrees)
-8-

Listing of the MATLAB code:

```
%=============================================================================
% Sngl_Slit_Diffn_Thy_1D.m
%
% Single Slit Diffraction - simplest theory - far-field/plane-wave approx!
% Sound waves assumed to be propagating in free air/great wide-open!
%
%============================================================================
%
% Written by Prof. Steven Errede Last Updated: Feb. 7, 2011 11:15 hr
%
%==================================================================================
close all;
clear all;
single thtr(1800);
single thtd(1800);
single Itot1(1800);
single SIL1(1800);
single yscr(2000);
single Itot2(2000);
single SIL2(2000);
% Specify numerical values of parameters:
Io = 1.0; % intensity from single slit (Watts/m^2)
Ir = 1.0*10^-12;% reference sound intensity (Watts/m^2)
Vair = 343.0; % speed of propagation of sound - free air (m/s)
freq = 1000.0; % frequency (Hz or cps)
lambda = Vair/freq; % wavelength (m)
Lobs = 10.0; % observer distance (m) n.b. lambda << Lobs
% Specify slit width (m):
Wdth = 0.1; % 0.1; 1.0; slit width (m) n.b. Wdth << Lobs
%====================================
% Calculate Itot vs. theta:
%===================================
Thetad = -90.0; % angle theta of observer in degrees
dTheta = 0.1; % step angle in degrees
for i = 1:1800;
    thtd(i) = Thetad; % angle theta of observer in degrees
    Thetar = (pi/180.0)*Thetad; % angle theta of observer in radians
    thtr(i) = Thetar;
    delta = ((pi*Wdth*sin(Thetar))/lambda); % phase (radians)
    Itot1(i) = Io*(sin(delta)/delta)^2; % total intensity (Watts/m^2)
    SIL1(i) = 10.0*log10(Itot1(i)/Ir); % Sound Intensity Level (dB)
    Thetad = Thetad + dTheta; % increment angle for next calculation
end
%===================================
% Calculate Itot vs. yscreen:
%===================================
    y = -50.00; % starting position on screen (m)
dy = 0.05; % step size on screen (m);
for i = 1:2000;
    yscr(i) = y; % position of observer on perp. screen (m)
    Thetar = atan(y/Lobs); % angle theta of observer in radians
    delta = ((pi*Wdth*sin(Thetar))/lambda); % phase (radians)
    Itot2(i) = Io*(sin(delta)/delta)^2; % total intensity (Watts/m^2)
    SIL2(i) = 10.0*log10(Itot2(i)/Ir); % Sound Intensity Level (dB)
```

```
    y = y + dy; % increment screen position for next calculation
end
figure(01);
plot(thtd,Itot1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. theta');
figure(02);
semilogy(thtd,Itot1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. theta');
figure(03);
plot(thtd,SIL1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('SIL (dB)');
title('SIL vs. theta');
figure(04);
polar(thtr,SIL1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('SIL (dB)');
title('SIL vs. theta');
figure(11);
plot(yscr,Itot2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. Yscreen');
figure(12);
semilogy(yscr,Itot2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. Yscreen');
figure(13);
plot(yscr,SIL2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('SIL (dB)');
title('SIL vs. Yscreen');
%=============================================================================
beep;
fprintf('\n Single Slit Diffraction Calculation Completed !!! \n')
%=============================================================================
```

-10-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

