2-D Interference-Diffraction with N_{y} - N_{x} Circular Apertures

In this example, we show plots of the sound intensity vs. angle and observer/listener position ($x_{\text {screen }}, y_{\text {screen }}$) on a screen for the simplest theory of interference-diffraction pattern associated with a 2-D array of $N_{y}-N_{x}$ identical circular apertures, each of radius R, with transverse separation distances $d_{y}, d_{x}>R$. This is an approximation to e.g. a 2-D array of $N_{y}-N_{x}$ loudspeakers mounted on an infinite baffle, as shown in the figure below. The observer/listener is located far from the apertures, a perpendicular distance $L(m)$ away, such that the conditions $R<d_{y}, d_{x} \ll L$.and. $\lambda \ll L$ both hold simultaneously, where $\lambda(m)$ is the wavelength of the sound - this is the socalled "far-field" limit.

The expression for interference-diffraction associated with a 2-D array of $N_{y}-N_{x}$ identical circular apertures is given by the product of $\{$ independent $\}$ interference \times diffraction factors:

$$
I_{\text {tot }}(\theta)=I_{o}\{\underbrace{\left\{\frac{\sin ^{2}\left(N_{x} \delta_{x}\left(\theta_{x}\right) / 2\right)}{\sin ^{2}\left(\delta_{x}\left(\theta_{x}\right) / 2\right)}\right\}}_{x-\text { Interference }} \cdot \underbrace{\left.\frac{\sin ^{2}\left(N_{y} \delta_{y}\left(\theta_{y}\right) / 2\right)}{\sin ^{2}\left(\delta_{y}\left(\theta_{y}\right) / 2\right)}\right\}}_{y-\text { Interference }} \cdot \underbrace{\left\{\frac{2 J_{1}(\rho(\theta))}{\rho(\theta)}\right\}^{2}}_{\text {Diffraction }}
$$

and $\operatorname{SIL}(\theta) \equiv 10 \log _{10}\left(I_{\text {tot }}(\theta) / I_{\text {ref }}\right)(d B)$
where I_{o} (Watts $/ m^{2}$) is the maximum sound intensity associated with an individual circular aperture, the interference phases $\delta_{y}\left(\theta_{y}\right)=k \Delta L_{y}\left(\theta_{y}\right)=k d_{y} \sin \theta_{y}$ and $\delta_{x}\left(\theta_{x}\right)=k \Delta L_{x}\left(\theta_{x}\right)=k d_{x} \sin \theta_{x}$ (radians), $k=2 \pi / \lambda$ (radians $/ m$) is the wavenumber and $\Delta L_{y}\left(\theta_{y}\right)=d_{y} \sin \theta_{y}\left(\Delta L_{x}\left(\theta_{x}\right)=d_{x} \sin \theta_{x}\right)(m)$ are the y-projected (x-projected) angle-dependent path length differences, respectively between pairs of adjacent sound sources in the y - (x-) direction to the observer/listener, located far away from the sound sources. The diffraction phase $\rho(\theta)=k R \sin \theta=(2 \pi / \lambda) R \sin \theta$ (radians) and $J_{1}(\rho(\theta))$ is the ordinary Bessel function of the first kind, of order $v=1 . I_{\text {ref }} \equiv 10^{-12}\left(\mathrm{Watts} / \mathrm{m}^{2}\right)$ is the reference sound intensity for the sound intensity level (SIL).

Interference minima - i.e. intensity zeroes (complete destructive interference) occur when the numerator factor $N \delta / 2= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots=n \pi, n= \pm 1, \pm 2, \pm 3, \ldots$ except when the denominator factor simultaneously has $\delta / 2= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots=n \pi, n= \pm 1, \pm 2, \pm 3, \ldots$ then have global maxima of the intensity, where $I_{\text {tot }}=N^{2} I_{0}$.

From simple trigonometry, it is easy to show that the path length difference $\Delta L_{y}\left(\theta_{y}\right)=d_{y} \sin \theta_{y}$, where θ_{y} is the y-projected angle the observer/listener makes with respect to the normal, or forward axis of the array of N_{y} circular apertures, and similarly for $\Delta L_{x}\left(\theta_{x}\right)=d_{x} \sin \theta_{x}$.

Diffraction minima (intensity zeroes) occur at the non-trivial zeros of the Bessel function $J_{1}(\rho)$, which occur at $\rho=3.8317,7.0156,10.1735,13.3237,16.4706,19.6159, \ldots$

The corresponding location of the observer's/listener's position $y_{\text {screen }}$ on a screen located a perpendicular distance L away from the N sound sources is: $r_{\text {screen }}(\theta)=L \tan \theta$, or conversely: $\theta=\tan ^{-1}\left(r_{\text {screen }} / L\right)$, where $r_{\text {screen }}=\sqrt{x_{\text {screen }}^{2}+y_{\text {screen }}^{2}}$ and $\theta_{y}=\tan ^{-1}\left(y_{\text {screen }} / L\right), \theta_{x}=\tan ^{-1}\left(x_{\text {screen }} / L\right)$.

We coded up the above formulas using MATLAB to make plots of $I_{\text {tot }} v s . \theta$ and $I_{\text {tot }} v s .\left(x_{\text {screen }}, y_{\text {screen }}\right)$ e.g. for $\left(N_{y}, N_{x}\right)=(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)$ for $d_{y}=d_{x}=1.0 \mathrm{~m}$ and $R=1.0 \mathrm{~m}$, with the following parameter values: $I_{o}=1 \mathrm{Watt} / \mathrm{m}^{2}$, observer/listener distance (at $\theta=0$) of $L=10 \mathrm{~m}$, the speed of propagation in free air/great-wide open: $v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ and frequency of $f=1000 \mathrm{~Hz}$, thus $\lambda=v_{\text {air }} / f=0.345 \mathrm{~m}$.

In the following figures, note that the angular width of the central maxima decreases as the radius of the circular aperture increases, since the diffraction phase $\rho(\theta)=k R \sin \theta=(2 \pi / \lambda) R \sin \theta$ (radians) is linearly proportional to R. Note also that the angular width of the central maxima decreases linearly with increasing frequency f, since the diffraction phase increases linearly with frequency:

$$
\rho(\theta)=k R \sin \theta=(2 \pi / \lambda) R \sin \theta=\left(2 \pi f / v_{\text {air }}\right) R \sin \theta \text { (radians). }
$$

Note also that the angular width of the central maxima decreases as the number of circular apertures N increases. Note further that the number of maxima/minima increases linearly with increasing frequency f, since the y-, x-interference phase differences increase linearly with frequency:

$$
\begin{gathered}
\delta_{y}\left(\theta_{y}\right)=k \Delta L_{y}\left(\theta_{y}\right)=(2 \pi / \lambda) \Delta L_{y}\left(\theta_{y}\right)=\left(2 \pi f / v_{\text {air }}\right) \Delta L_{y}\left(\theta_{y}\right)=\left(2 \pi f / v_{\text {air }}\right) d_{y} \sin \theta_{y} . \\
\delta_{x}\left(\theta_{x}\right)=k \Delta L_{x}\left(\theta_{x}\right)=(2 \pi / \lambda) \Delta L_{x}\left(\theta_{x}\right)=\left(2 \pi f / v_{\text {air }}\right) \Delta L_{x}\left(\theta_{x}\right)=\left(2 \pi f / v_{\text {air }}\right) d_{x} \sin \theta_{x}
\end{gathered}
$$

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(1,1)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

theta-x (degrees)
-4-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ for $\left(N_{y}, N_{x}\right)=(1,1)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

-5-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(1,2)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

theta-x (degrees)
-6-

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ for $\left(N_{y}, N_{x}\right)=(1,2)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

-7-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(2,1)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

theta-x (degrees)
-8-

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ for $\left(N_{y}, N_{x}\right)=(2,1)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(2,2)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

theta-x (degrees)
-10-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $\left(x_{s c r}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ for $\left(N_{y}, N_{x}\right)=(2,2)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

-11-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(2,4)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

theta-x (degrees)
-12-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $\left(x_{s c r}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{s c r}, y_{s c r}\right)$ for $\left(N_{y}, N_{x}\right)=(2,4)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

-13-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(2,4)$ with $d_{y}=3 m, d_{x}=R=1.0 \mathrm{~m}$:

\{n.b. This is a model for 2×4 PA columns \}
-14-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{s c r}, y_{\text {scr }}\right)$ for $\left(N_{y}, N_{x}\right)=(2,4)$ with $d_{y}=3 m, d_{x}=R=1.0 \mathrm{~m}$:

\{n.b. This is a model for 2×4 PA columns\}
-15-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(4,2)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

theta-x (degrees)
-16-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ for $\left(N_{y}, N_{x}\right)=(4,2)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

Polar plots of SIL vs. θ_{y} and SIL vs. θ_{x} for $\left(N_{y}, N_{x}\right)=(4,4)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

theta-x (degrees)
-18-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ and SIL vs. $\left(x_{\text {scr }}, y_{\text {scr }}\right)$ for $\left(N_{y}, N_{x}\right)=(4,4)$ with $d_{y}=d_{x}=R=1.0 \mathrm{~m}$:

-19-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Listing of the MATLAB code:

```
%===============================================================================
% Intf_Diffn_2D_Circ_Aperture_Thy.m
%
% 2-D interference-diffraction associated with N circular apertures
% - simplest theory - far-field/plane-wave approx!
% Sound waves assumed to be propagating in free air/great wide-open!
%
% Ny circular apertures distributed symmetrically along horizontal y-axis
% Nx circular apertures distributed symmetrically along vertical x-axis
% We use a right-handed x-y-z coordinate system.
%==============================================================================
%
% Written by Prof. Steven Errede Last Updated: Feb. 11, 2011 09:10 hr
%
%==============================================================================
close all;
clear all;
single thtxr(1800);
single thtxd(1800);
single thtyr(1800);
single thtyd(1800);
single Itotx1(1800);
single SILx1(1800);
single Itoty1(1800);
single SILy1(1800);
single xscr(2000);
single Itotx2(2000);
single SILx2(2000);
single yscr(2000);
single Itoty2(2000);
single SILy2(2000);
single Itotxy(2000, 2000);
single LgItotxy(2000,2000);
single SILxy(2000,2000);
% Specify the # of y,x circular apertures:
Nyapr = 2; % 1; 2; 1; 2; 2; 4; 4; horizontal
Nxapr = 4; % 1; 1; 2; 2; 4; 2; 4; vertical
% Specify the numerical values of parameters:
Io = 1.0; % intensity from single slit (Watts/m^2)
Ir = 1.0*10^-12;% reference sound intensity (Watts/m^2)
Vair = 343.0; % speed of propagation of sound - free air (m/s)
freq = 1000.0; % frequency (Hz or cps)
lambda = Vair/freq; % wavelength (m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Lobs & = & 10.0; & \% & observer distance & (m) & n.b & lambda & & bs \\
\hline Dx & = & 1.0; & \% & \(x\)-distance between & apertures(m) & n.b & Dx & & < Lobs \\
\hline Dy & = & 3.0; & \% & \(y\)-distance between & apertures(m) & n.b & Dy & & Lobs \\
\hline
\end{tabular}
Rapr \(=1.0 ; \quad \% 0.6 ; 1.0\); aperture radius (m) n.b. Rapr \(\ll\) Lobs
nu = 1; % order of bessel function of 1st kind (see below)
```

```
%=======================================================================
```

%===
% Calculate Itot, SIL vs. theta-y along horizontal y-axis @ x = 0:
% Calculate Itot, SIL vs. theta-y along horizontal y-axis @ x = 0:
%==
%==
Thetad = -90.0; % angle theta of observer in degrees
Thetad = -90.0; % angle theta of observer in degrees
dTheta = 0.1; % step angle in degrees
dTheta = 0.1; % step angle in degrees
for i = 1:1800;
for i = 1:1800;
thtyd(i) = Thetad; % angle theta of observer in degrees
thtyd(i) = Thetad; % angle theta of observer in degrees
-20-

```
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
```

 Thetar = (pi/180.0)*Thetad; % angle theta of observer in radians
 thtyr(i) = Thetar;
 deltay = ((2.0*pi*Dy)/lambda)*sin(Thetar); % int'f phase (radians)
 rho = ((2.0*pi*Rapr)/lambda)*sin(Thetar); % diffn phase (radians)
 Itoty1(i) = Io*(Nxapr)^2*(sin(Nyapr*deltay/2.0)/sin(deltay/2.0))^2
 *((2.0*bessel(nu, rho))/rho)^2;
 SILy1(i) = 10.0*log10(Itoty1(i)/Ir); % Sound Intensity Level (dB)
 Thetad = Thetad + dTheta; % increment angle for next calculation
 end

```
```

%===
% Calculate Itot, SIL vs. yscreen along horizontal y-axis @ x = 0:
%===
y = -50.00; % starting position on screen (m)
dy = 0.05; % step size on screen (m);
for i = 1:2000;
yscr(i) = y; % position of observer on perp. screen (m)
Thetar = atan(y/Lobs); % angle theta of observer in radians
deltay = ((2.0*pi*Dy)/lambda)*sin(Thetar); % int'f phase (radians)
rho = ((2.0*pi*Rapr)/lambda)*sin(Thetar); % diffn phase (radians)
Itoty2(i) = Io*(Nxapr)^2*(sin(Nyapr*deltay/2.0)/sin(deltay/2.0))^2
*((2.0*bessel(nu,rho))/rho)^2;
SILy2(i) = 10.0*log10(Itoty2(i)/Ir); % Sound Intensity Level (dB)
y = y + dy; % increment screen position for next calculation
end

```
\(\%===================================================================\)
\% Calculate 1-D Itot, SIL vs. theta-x along horizontal x-axis @ y = 0:
\(\%===============================================================\)
Thetad \(=-90.0 ; \quad \%\) angle theta of observer in degrees
dTheta \(=0.1 ; \quad \%\) step angle in degrees
for \(i=1: 1800\);
    thtxd(i) = Thetad; \(\quad \%\) angle theta of observer in degrees
    Thetar \(=\) (pi/180.0)*Thetad; \% angle theta of observer in radians
    thtxr(i) \(=\) Thetar;
    deltax \(=\left(\left(2.0^{*} p i^{*} D x\right) / l a m b d a\right) * \sin (\) Thetar \() ; \%\) int'f phase (radians)
    rho \(=\left(\left(2.0^{*} \mathrm{pi}^{*} \mathrm{Rapr}\right) / l a m b d a\right) * \sin (\) Thetar \() ; \%\) diffn phase (radians)
    Itotx1(i) \(=\) Io*(Nyapr)^2*(sin(Nxapr*deltax/2.0)/sin(deltax/2.0))^2
                        * ((2.0*bessel(nu, rho))/rho)^2;
    SILx1(i) = 10.0*log10(Itotx1(i)/Ir); \% Sound Intensity Level (dB)
    Thetad \(=\) Thetad + dTheta; \(\%\) increment angle for next calculation
end

\% Calculate 1-D Itot, SIL vs. xscreen along horizontal x-axis @ y = 0:
\(\%================================================================\)
    \(x=-50.00 ; \%\) starting position on screen (m)
dx = 0.05; \% step size on screen (m);
for \(i=1: 2000\);
    \(\operatorname{xscr}(i)=x ; \quad\) \% position of observer on perp. screen (m)
    Thetar \(=\) atan(x/Lobs); \% angle theta of observer in radians
    deltax \(=\left(\left(2.0^{*} p i * D x\right) / l a m b d a\right) * s i n(T h e t a r) ; \%\) int'f phase (radians)
    rho \(=\left(\left(2.0^{*} \mathrm{pi} * R a p r\right) / l a m b d a\right)^{*} \sin (\) Thetar \() ; \%\) diffn phase (radians)
    Itotx2(i) \(=\) Io*(Nyapr)^2*(sin(Nxapr*deltax/2.0)/sin(deltax/2.0))^2
            * ((2.0*bessel(nu, rho))/rho)^2;
    SILx2(i) \(=10.0^{*} \log 10(\) Itotx2(i)/Ir); \% Sound Intensity Level (dB)
    \(x=x+d x ; \quad \%\) increment screen position for next calculation
end
-21-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.
```

figure(01);
plot(thtyd,Itoty1,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. theta-y at x = 0');
figure(02);
semilogy(thtyd,Itoty1,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. theta-y at x = 0');
figure(03);
plot(thtyd,SILy1,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('SIL (dB)');
title('SIL vs. theta-y at x = 0');
figure(04);
polar(thtyr,SILy1,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('SIL (dB)');
title('Polar Plot of SIL vs. theta-y at x = 0');
figure(05);
plot(yscr,Itoty2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. Yscreen at x = 0');
figure(06);
semilogy(yscr,Itoty2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. Yscreen at x = 0');
figure(07);
plot(yscr,SILy2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('SIL (dB)');
title('SIL vs. Yscreen at x = 0');
figure(11);
plot(thtxd,Itotx1,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. theta-x at y = 0');
figure(12);
semilogy(thtxd,Itotx1,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. theta-x at y = 0');
figure(13);
plot(thtxd,SILx1,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('SIL (dB)');
title('SIL vs. theta-x at y = 0');

```
-22-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.
```

figure(14);
polar(thtxr,SILx1,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('SIL (dB)');
title('Polar Plot of SIL vs. theta-x at y = 0');
figure(15);
plot(xscr,Itotx2,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. Xscreen at y = 0');
figure(16);
semilogy(xscr,Itotx2,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. Xscreen at y = 0');
figure(17);
plot(xscr,SILx2,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('SIL (dB)');
title('SIL vs. Xscreen at y = 0');
%==
fprintf('\n Very CPU-intensive I(x,y) vs. x,y calcs - please be patient!! \n')
%===
%==
% Calculate 2-D Itot, SIL vs. x,y-screen:
%===
x = -50.00; % x-starting position on screen (m)
dx = 0.05; % x-step size on screen (m);
for j = 1:2000;
xscr(j) = x; % x-position of observer on perp. screen (m)
Thetax = atan(x/Lobs); % x-projected angle theta-x in radians
deltax = ((2.0*pi*Dx)/lambda)*sin(Thetax); % int'f phase (radians)
y = -50.00; % y-starting position on screen (m)
dy = 0.05; % y-step size on screen (m);
for i = 1:2000;
yscr(i) = y; % y-position of observer on perp. screen (m)
rscr = sqrt((xscr(j))^2 + (yscr(i))^2); % radial pos'n on perp. screen (m)
Thetar = atan(rscr/Lobs); % angle theta of observer in radians
Thetay = atan(y/Lobs); % y-projected angle theta-y in radians
deltay = ((2.0*pi*Dy)/lambda)*sin(Thetay); % int'f phase (radians)
rho = ((2.0*pi*Rapr)/lambda)*sin(Thetar); % diffn phase (radians)
Itotxy(j,i) = Io*(sin(Nxapr*deltax/2.0)/sin(deltax/2.0))^2
*(sin(Nyapr*deltay/2.0)/sin(deltay/2.0))^2
*((2.0*bessel(nu,rho))/rho)^2; % total intensity (Watts/m^2)
LgItotxy(j,i) = log10(Itotxy(j,i)); % log10 of total intensity (Watts/m^2)
SILxy(j,i) = 10.0*log10(Itotxy(j,i)/Ir); % Sound Intensity Level (dB)
y = y + dy; % increment y-screen position for next calculation
end
x = x + dx; % increment x-screen position for next calculation
end
figure(21);
surf(xscr,yscr,Itotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Intensity (Watts/m^{2})');
title ('Intensity vs. Xscreen-Yscreen');

```
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.
```

figure(22);
surf(xscr,yscr,LgItotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Log10(Intensity) (Watts/m^{2})');
title ('Log10(Intensity) vs. Xscreen-Yscreen');
figure(23);
surf(xscr,yscr,SILxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('SIL (dB)');
title ('SIL vs. Xscreen-Yscreen');
%==
beep;
fprintf('\n Calculation of intf-diffn for 2-D array of Nx, Ny circular apertures completed !!!
\n')
%==

```
-24-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.```

