\mathbf{N}-Slit Interference in 2-Dimensions - Simplest Theory

In this example, we show plots of the sound intensity $v s$. angles θ_{x}, θ_{y} and observer/listener positions $x_{\text {screen, }}, y_{\text {screen }}$ on a screen for the simplest 2-D theory of N-slit interference - where N_{χ} and N_{y} sound sources, all in phase with each other, are assumed to be comprised of infinitely long, parallel slits of infinitely narrow width - i.e. infinitesimally thin slits, each separated from each other by a distance d, oriented in the x and y directions, respectively. The observer/listener is located far from the sound sources, a perpendicular z-distance $L(m)$ away, and such that the conditions $d \ll L$.and. $\lambda \ll L$ both hold simultaneously, where $\lambda(m)$ is the wavelength of the sound - this is the so-called "far-field" limit.

The expression for 1-D N-slit interference in this simplest theory is given by the product of two independent interference factors (see P406POM Lecture Notes P406POM_Lect3_Part2):

$$
\begin{equation*}
I_{\text {tot }}\left(x_{\text {screen }}, y_{\text {screen }}\right)=I_{o}\left\{\frac{\sin ^{2}\left(N_{x} \delta_{x} / 2\right)}{\sin ^{2}\left(\delta_{x} / 2\right)}\right\} \cdot\left\{\frac{\sin ^{2}\left(N_{y} \delta_{y} / 2\right)}{\sin ^{2}\left(\delta_{y} / 2\right)}\right\} \text { and } S I L \equiv 10 \log _{10}\left(I_{\text {tot }} / I_{\text {ref }}\right)(\tag{dB}
\end{equation*}
$$

where $I_{o}\left(\right.$ Watts $\left./ m^{2}\right)$ is the sound intensity associated with a single slit, the phase $\delta_{x, y}=k \Delta L_{x, y}$ (radians), $k=2 \pi / \lambda$ (radians $/ m$) is the wavenumber and $\Delta L_{x, y}(m)$ is the path length difference between adjacent sound sources to the observer/listener, located far away from the sound sources, in the x, y direction, respectively. $I_{\text {ref }} \equiv 10^{-12}$ (Watts $\left./ \mathrm{m}^{2}\right)$ is the reference for the sound intensity level (SIL).

Minima - i.e. intensity zeroes (complete destructive interference) occur when the numerator factor $N \delta / 2= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots=n \pi, n= \pm 1, \pm 2, \pm 3, \ldots$ except when the denominator factor simultaneously has $\delta / 2= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots=n \pi, n= \pm 1, \pm 2, \pm 3, \ldots$ then have global maxima of the intensity, where $I_{\text {tot }}=N^{2} I_{0}$.

From simple trigonometry, it is easy to show that the path length difference $\Delta L_{x, y}=d \sin \theta_{x, y}$, where $\theta_{x, y}$ is the angle the observer/listener makes with respect to the normal, or forward axis of the array of N slits relative to the x, y direction, respectively. The corresponding location of the observer's position $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ on a screen located a perpendicular distance L away from the N sound sources is: $x_{\text {screen }}=L \tan \theta_{x}\left(y_{\text {screen }}=L \tan \theta_{y}\right)$, or conversely: $\theta_{x}=\tan ^{-1}\left(x_{\text {screen }} / L\right)\left(\theta_{y}=\tan ^{-1}\left(y_{\text {screen }} / L\right)\right)$, respectively.

We coded up the above formulas using MATLAB to make plots of $I_{\text {tot }} v s . \theta_{x, y}$ and $I_{\text {tot }} v s . x_{\text {screen }}, y_{\text {screen }}$ e.g. for the combinations $\left(N_{x}, N_{y}\right)=(2,2),(5,3)$ and $(10,4)$ slits, with the following parameter values: $I_{o}=1 \mathrm{Watt} / \mathrm{m}^{2}$, slit separation distance(s) of $d=1 \mathrm{~m}$, observer/listener distance (at $\theta_{x}=\theta_{y}=0$) of $L=10 \mathrm{~m}$, the speed of propagation in free air/greatwide open: $v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ and frequency of $f=1000 \mathrm{~Hz}$, thus $\lambda=v_{\text {air }} / f=0.345 \mathrm{~m}$.

Plots of $I_{\text {tot }}$ vs. θ_{x} for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }} v s . \theta_{y}$ for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Polar plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

theta-x (degrees)

theta-y (degrees)
-5-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

-6-

Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

-7-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of SIL vs. $x_{\text {screen }}$ and SIL vs. $y_{\text {screen }}$ for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

-8-

3-D Plot of $I_{\text {tot }}\left(x_{\text {screen }}, y_{\text {screen }}\right)$ vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

Intensity vs. Xscreen-Yscreen

-9-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

3-D Plot of $\operatorname{SIL}\left(x_{\text {screen }}, y_{\text {screen }}\right)$ vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $\left(N_{x}, N_{y}\right)=(2,2)$ slits:

-10-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. θ_{x} for $\left(N_{x}, N_{y}\right)=(5,3)$ slits:

-11-

Plots of $I_{\text {tot }}$ vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(5,3)$ slits:

-12-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(5,3)$ slits:

-13-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Polar plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(5,3)$ slits:

-14-

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $\left(N_{\chi}, N_{y}\right)=(5,3)$ slits:

-16-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $\left(N_{x}, N_{y}\right)=(5,3)$ slits:

-17-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

3-D Plot of $I_{\text {tot }}\left(x_{\text {screen }}, y_{\text {screen }}\right)$ vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $\left(N_{x}, N_{y}\right)=(5,3)$ slits:

Intensity vs. Xscreen-Yscreen

-18-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

3-D Plot of $\operatorname{SIL}\left(x_{\text {screen }}, y_{\text {screen }}\right)$ vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $\left(N_{x}, N_{y}\right)=(5,3)$ slits:

SIL vs. Xscreen-Yscreen

Plots of $I_{\text {tot }}$ vs. θ_{x} for $\left(N_{x}, N_{y}\right)=(4,10)$ slits:

-20-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $I_{\text {tot }}$ vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(4,10)$ slits:

-21-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(4,10)$ slits:

-22-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Polar plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $\left(N_{x}, N_{y}\right)=(4,10)$ slits:

-23-

Plots of $I_{\text {tot }}$ vs. $x_{\text {screen }}$ and $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $\left(N_{x}, N_{y}\right)=(4,10)$ slits:

-24-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $\left(N_{x}, N_{y}\right)=(4,10)$ slits:

-25-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

Plots of SIL vs. $x_{\text {screen }}$ and SIL vs. $y_{\text {screen }}$ for $\left(N_{\chi}, N_{y}\right)=(4,10)$ slits:

-26-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

-27-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

3-D Plot of $\operatorname{SIL}\left(x_{\text {screen }}, y_{\text {screen }}\right)$ vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $\left(N_{x}, N_{y}\right)=(4,10)$ slits:

In the above figures, note that the angular width of the maxima decreases as the number of slits N increases. Note also that the number of maxima/minima increases linearly with increasing frequency f, since the phase difference increases linearly with frequency:

$$
\delta_{x, y}=k \Delta L_{x, y}=(2 \pi / \lambda) \Delta L_{x, y}=\left(2 \pi f / v_{\text {air }}\right) \Delta L_{x, y}=\left(2 \pi f / v_{\text {air }}\right) d \sin \theta_{x, y} .
$$

Listing of the MATLAB code:


```
% Nslit_2D_Intf_Smpl_Thy.m
%
% 2D N-slit interference - simplest theory - far-field/plane-wave approx!
% sound waves assumed to be propagating in free air/great wide-open!
% each "slit" treated simplistically as point source - no spatial extent!
%
%=============================================================================
%
% Written by Prof. Steven Errede Last Updated: Feb. 7, 2011 11:25 hr
%
%===============================================================================
close all;
clear all;
single thtxr(1800);
single thtxd(1800);
single thtyr(1800);
single thtyd(1800);
single Itotx1(1800);
single Itoty1(1800);
single Itotxt(1800);
single Itotyt(1800);
single SILxt(1800);
single SILyt(1800);
single xscr(2000);
single yscr(2000);
single Itotx2(2000);
single Itoty2(2000);
single Itotxs(2000);
single Itotys(2000);
single SILxs(2000);
single SILys(2000);
single Itotxy(2000,2000);
single LogItotxy(2000,2000);
single SILxy(2000,2000);
% Specify # of slits in x and y (n.b. both must be >= 2 !):
Nxslits = 2; % 2; 5; 4;
Nyslits = 2; % 2; 3; 10;
% Specify other needed parameters:
Io = 1.0; % intensity from single slit (Watts/m^2)
Ir = 1.0*10^-12;% reference sound intensity (Watts/m^2)
Vair = 343.0; % speed of propagation of sound - free air (m/s)
freq = 1000.0; % frequency (Hz or cps)
lambda = Vair/freq; % wavelength (m)
Lobs = 10.0; % perp. distance observer from slits (m) n.b. lambda << Lobs
Dsrc = 1.0; % transv. distance between slits (m) n.b. Dsrc << Lobs
```

```
%======================================
```

%======================================
% Calculate Itot vs. theta-x,y:
% Calculate Itot vs. theta-x,y:
%=====================================
%=====================================
Thetad = -90.0; % angle theta of observer in degrees
Thetad = -90.0; % angle theta of observer in degrees
dTheta = 0.1; % step angle in degrees
dTheta = 0.1; % step angle in degrees
for i = 1:1800;
for i = 1:1800;
thtxd(i) = Thetad; % angle theta of observer in degrees
thtxd(i) = Thetad; % angle theta of observer in degrees
Thetar = (pi/180.0)*Thetad; % angle theta of observer in radians
Thetar = (pi/180.0)*Thetad; % angle theta of observer in radians
thtxr(i) = Thetar;
thtxr(i) = Thetar;
deltax = (2.0*pi/lambda)*Dsrc*sin(Thetar); % resultant Nslit phase diff (radians)
deltax = (2.0*pi/lambda)*Dsrc*sin(Thetar); % resultant Nslit phase diff (radians)
Itotx1(i) = Io*(sin(Nxslits*deltax/2.0)/sin(deltax/2.0))^2;
Itotx1(i) = Io*(sin(Nxslits*deltax/2.0)/sin(deltax/2.0))^2;
Itoty1(i) = Io*(Nyslits)^2;

```
    Itoty1(i) = Io*(Nyslits)^2;
```

 -29-
 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

```
    Itotxt(i) = Itotx1(i)*Itoty1(i)/Io; % total intensity (Watts/m^2)
    SILxt(i) = 10.0*log10(Itotxt(i)/Ir); % Sound Intensity Level (dB)
        Thetad = Thetad + dTheta; % increment angle for next calculation
end
```

```
Thetad \(=-90.0 ; \quad \%\) angle theta of observer in degrees
```

Thetad $=-90.0 ; \quad \%$ angle theta of observer in degrees
dTheta $=0.1 ; \quad \%$ step angle in degrees
dTheta $=0.1 ; \quad \%$ step angle in degrees
for $i=1: 1800$;
for $i=1: 1800$;
thtyd(i) = Thetad; \quad \% angle theta of observer in degrees
thtyd(i) = Thetad; \quad \% angle theta of observer in degrees
Thetar $=(p i / 180.0) * T h e t a d ; \%$ angle theta of observer in radians
Thetar $=(p i / 180.0) * T h e t a d ; \%$ angle theta of observer in radians
thtyr(i) $=$ Thetar;
thtyr(i) $=$ Thetar;
deltay $=\left(2.0^{*}\right.$ pi/lambda)*Dsrc*sin(Thetar); \% resultant Nslit phase diff (radians)
deltay $=\left(2.0^{*}\right.$ pi/lambda)*Dsrc*sin(Thetar); \% resultant Nslit phase diff (radians)
Itotx1(i) = Io*(Nxslits)^2;
Itotx1(i) = Io*(Nxslits)^2;
Itoty1(i) = Io*(sin(Nyslits*deltay/2.0)/sin(deltay/2.0))^2; \% total intensity (Watts/m^2)
Itoty1(i) = Io*(sin(Nyslits*deltay/2.0)/sin(deltay/2.0))^2; \% total intensity (Watts/m^2)
Itotyt(i) = Itotx1(i)*Itoty1(i)/Io; \% total intensity (Watts/m^2)
Itotyt(i) = Itotx1(i)*Itoty1(i)/Io; \% total intensity (Watts/m^2)
SILyt(i) $=10.0^{*} \log 10($ Itotyt(i)/Ir); \% Sound Intensity Level (dB)
SILyt(i) $=10.0^{*} \log 10($ Itotyt(i)/Ir); \% Sound Intensity Level (dB)
Thetad $=$ Thetad + dTheta; $\%$ increment angle for next calculation
Thetad $=$ Thetad + dTheta; $\%$ increment angle for next calculation
end
end
figure(01);
plot(thtxd,Itotxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('I(theta-x) (Watts/m^{2})');
title('I(theta-x) vs. theta-x on Y = 0 axis');
figure(02);
semilogy(thtxd,Itotxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('I(theta-x) (Watts/m^{2})');
title('Log I(theta-x) vs. theta-x on Y = 0 axis');
figure(03);
plot(thtyd,Itotyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('I(theta-y) (Watts/m^{2})');
title('I(theta-y) vs. theta-y on X = 0 axis');
figure(04);
semilogy(thtyd,Itotyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('I(theta-y) (Watts/m^{2})');
title('Log I(theta-y) vs. theta-y on X = 0 axis');
figure(05);
plot(thtxd,SILxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('SIL(theta-x) (dB)');
title('SIL(theta-x) vs. theta-x on Y = 0 axis');
figure(06);
plot(thtyd,SILyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('SIL(theta-y) (dB)');
title('SIL(theta-y) vs. theta-y on X = 0 axis');
figure(07);
polar(thtxr,SILxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('SIL(theta-x) (dB)');
title('Polar plot of SIL(theta-x) vs. theta-x on Y = 0 axis');
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

```
```

figure(08);
polar(thtyr,SILyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('SIL(theta-y) (dB)');
title('Polar plot of SIL(theta-y) vs. theta-y on X = 0 axis');

```

```

% Calculate Itot vs. x,y-screen:
%===================================
x = -50.00; % starting position on screen (m)
dx = 0.05; % step size on screen (m);
for i = 1:2000;
xscr(i) = x; % position of observer on perp. screen (m)
Thetar = atan(x/Lobs); % angle theta of observer in radians
deltax = (2.0*pi/lambda)*Dsrc*sin(Thetar); % resultant Nslit phase diff (radians)
Itotx2(i) = Io*(sin(Nxslits*deltax/2.0)/sin(deltax/2.0))^2; % total intensity (Watts/m^2)
Itoty2(i) = Io*(Nyslits)^2;
Itotxs(i) = Itotx2(i)*Itoty2(i)/Io; % total intensity (Watts/m^2)
SILxs(i) = 10.0*log10(Itotxs(i)/Ir); % Sound Intensity Level (dB)
x = x + dx; % increment screen position for next calculation
end
y = -50.00; % starting position on screen (m)
dy = 0.05; % step size on screen (m);
for i = 1:2000;
yscr(i) = y; % position of observer on perp. screen (m)
Thetar = atan(y/Lobs); % angle theta of observer in radians
deltay = (2.0*pi/lambda)*Dsrc*sin(Thetar); % resultant Nslit phase diff (radians)
Itotx2(i) = Io*(Nxslits)^2;
Itoty2(i) = Io*(sin(Nyslits*deltay/2.0)/sin(deltay/2.0))^2; % total intensity (Watts/m^2)
Itotys(i) = Itotx2(i)*Itoty2(i)/Io; % total intensity (Watts/m^2)
SILys(i) = 10.0*log10(Itotys(i)/Ir); % Sound Intensity Level (dB)
y = y + dy; % increment screen position for next calculation
end

```
figure(11);
plot(xscr,Itotxs,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Intensity vs. Xscreen on \(Y\) = 0 axis');
figure(12);
semilogy(xscr,Itotxs,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Log Intensity vs. Xscreen on Y = 0 axis');
figure(13);
plot(yscr,Itotys,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Intensity vs. Yscreen on \(\mathrm{X}=0\) axis');
figure(14);
semilogy(yscr,Itotys,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Log Intensity vs. Yscreen on \(\mathrm{X}=0\) axis');
-31-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.
```

figure(15);
plot(xscr,SILxs,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('SIL(Xscreen) (dB)');
title('SIL(Xscreen) vs. Xscreen on Y = 0 axis');
figure(16);
plot(yscr,SILys,'b');
grid on;
xlabel('Yscreen (m)')
ylabel('SIL(Yscreen) (dB)');
title('SIL(Yscreen) vs. Yscreen on X = 0 axis');

```

```

beep;
fprintf('\n Very CPU-intensive I(x,y) vs. x,y calcs - please be patient!! \n')

```


```

% Calculate 2D Itot vs. x,y-screen:
%======================================
x = -50.00; % starting position on screen (m)
dx = 0.05; % step size on screen (m);
for j = 1:2000;
xscr(j) = x; % position of observer on perp. screen (m)
Thetar = atan(x/Lobs); % angle theta of observer in radians
deltax = (2.0*pi/lambda)*Dsrc*sin(Thetar); % resultant Nslit phase diff (radians)
Itotx2(j) = Io*(sin(Nxslits*deltax/2.0)/sin(deltax/2.0))^2; % total intensity (Watts/m^2)
y = -50.00; % starting position on screen (m)
dy = 0.05; % step size on screen (m);
for i = 1:2000;
yscr(i) = y; % position of observer on perp. screen (m)
Thetar = atan(y/Lobs); % angle theta of observer in radians
deltay = (2.0*pi/lambda)*Dsrc*sin(Thetar); % resultant Nslit phase diff (radians)
Itoty2(i) = Io*(sin(Nyslits*deltay/2.0)/sin(deltay/2.0))^2; % total intensity (Watts/m^2)
Itotxy(j,i) = Itotx2(j)*Itoty2(i)/Io; % total intensity (Watts/m^2)
LogItotxy(j,i) = log10(Itotxy(j,i));
SILxy(j,i) = 10.0*log10(Itotxy(j,i)/Ir); % Sound Intensity Level (dB)
y = y + dy; % increment screen position for next calculation
end
x = x + dx; % increment screen position for next calculation
end

```
figure(21);
surf(xscr,yscr,Itotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Intensity (Watts/m^\{2\})');
title ('Intensity vs. Xscreen-Yscreen');
figure(22);
surf(xscr,yscr,LogItotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Log Intensity (Watts/m^\{2\})');
title ('Log Intensity vs. Xscreen-Yscreen')
figure(23);
surf(xscr,yscr,SILxy);
shading interp;
xlabel('Xscreen (m)');
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
```

ylabel('Yscreen (m)');
zlabel('SIL (dB)');
title ('SIL vs. Xscreen-Yscreen');
%===
beep;
fprintf('\n 2-D Nslit interference simple thy calculation completed !!! \n')
%===

```
```

