Fraunhofer Diffraction Through a Circular Aperture

In this example, we show plots of the sound intensity vs. angle and observer/listener position $y_{\text {screen }}$ on a screen for the simplest theory of Fraunhofer diffraction through a circular aperture of radius R. This is an approximation to e.g. a loudspeaker mounted on an infinite baffle.
The observer/listener is located far from the aperture, a perpendicular distance $L(m)$ away, such that the conditions $R \ll L$.and. $\lambda \ll L$ both hold simultaneously, where $\lambda(m)$ is the wavelength of the sound - this is the so-called "far-field" limit.

The expression for Fraunhofer diffraction through a circular aperture is given by (see P406POM Lecture Notes P406POM_Lect3_Part2):

$$
I_{\text {tot }}(\theta)=I_{o}\left\{\frac{2 J_{1}(\rho(\theta))}{\rho(\theta)}\right\}^{2} \text { and } \operatorname{SIL}(\theta) \equiv 10 \log _{10}\left(I_{\text {tot }}(\theta) / I_{\text {ref }}\right)(d B)
$$

where $I_{o}\left(\right.$ Watts $\left./ m^{2}\right)$ is the maximum sound intensity associated with the circular aperture, the phase $\rho(\theta)=k R \sin \theta=(2 \pi / \lambda) R \sin \theta$ (radians) and $J_{1}(\rho(\theta))$ is the ordinary Bessel function of the first kind, of order $v=1$. $I_{\text {ref }} \equiv 10^{-12}\left(\mathrm{Watts} / \mathrm{m}^{2}\right)$ is the reference sound intensity for the sound intensity level (SIL).

Diffraction minima (intensity zeroes) occur at the non-trivial zeros of the Bessel function $J_{1}(\rho)$, which occur at $\rho=3.8317,7.0156,10.1735,13.3237,16.4706,19.6159, \ldots$

The corresponding location of the observer's/listener's position $y_{\text {screen }}$ on a screen located a perpendicular distance L away from the N sound sources is: $r_{\text {screen }}(\theta)=L \tan \theta$, or conversely: $\theta=\tan ^{-1}\left(r_{\text {screen }} / L\right)$, where $r_{\text {screen }}=\sqrt{X_{\text {screen }}^{2}+y_{\text {screen }}^{2}}$.

We coded up the above formulas using MATLAB to make plots of $I_{\text {tot }} v s . \theta$ and $I_{\text {tot }} v s . y_{\text {screen }}$ e.g. for $R=0.1$ and 1.0 m , with the following parameter values: $I_{o}=1 \mathrm{Watt} / \mathrm{m}^{2}$, observer/listener distance (at $\theta=0$) of $L=10 \mathrm{~m}$, the speed of propagation in free air/great-wide open: $v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ and frequency of $f=1000 \mathrm{~Hz}$, thus $\lambda=v_{\text {air }} / f=0.345 \mathrm{~m}$.

In the following figures, note that the angular width of the central maxima decreases as the radius of the circular aperture increases, since the phase $\rho=k R \sin \theta=(2 \pi / \lambda) R \sin \theta$ (radians) is linearly proportional to R. Note also that the angular width of the central maxima decreases linearly with increasing frequency f, since the phase increases linearly with frequency:

$$
\rho(\theta)=k R \sin \theta=(2 \pi / \lambda) R \sin \theta=\left(2 \pi f / v_{\text {air }}\right) R \sin \theta(\text { radians }) .
$$

Linear and Semilog Plots of $I_{\text {tot }} v s . \theta$ for $R=0.1 \mathrm{~m}$:

-2-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Linear and Semilog Plots of $I_{\text {tot }} v s . y_{\text {screen }}$ for $R=0.1 \mathrm{~m}$:

-3-

Plots of SIL vs. θ and SIL vs. $y_{\text {screen }}$ for $R=0.1 \mathrm{~m}$:

Plots of $\operatorname{SIL}\left(x_{s c r}, y_{\text {scr }}\right)$ vs. $\left(x_{s c r}, y_{s c r}\right)$ for $R=0.1 \mathrm{~m}$:

SIL vs. Xscreen-Yscreen

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

Linear and Semilog Plots of $I_{\text {tot }} v s . \theta$ for $R=1.0 \mathrm{~m}$:

-7-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Linear and Semilog Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $R=1.0 \mathrm{~m}$:

-8-

Plots of SIL vs. θ and SIL vs. $y_{\text {screen }}$ for $R=1.0 \mathrm{~m}$:

-9-

Linear and Semilog Plots of $I_{\text {tot }}\left(x_{\text {scr }}, y_{\text {scr }}\right)$ vs. $\left(x_{s c r}, y_{\text {scr }}\right)$ for $R=1.0 \mathrm{~m}$:

-10-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Plots of $\operatorname{SIL}\left(x_{s c r}, y_{\text {scr }}\right)$ vs. $\left(x_{\text {scr }}, y_{s c r}\right)$ for $R=1.0 \mathrm{~m}$:

-11-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Polar plot of $\operatorname{SIL}(\theta)$ vs. θ for $R=0.1 \mathrm{~m}$:

theta (degrees)
Polar plot of $\operatorname{SIL}(\theta) v s . \theta$ for $R=1.0 \mathrm{~m}$:

theta (degrees)
-12-

Listing of the MATLAB code:

```
%===============================================================================
% Diffn_Circ_Aperture_Thy.m
%
% Fraunhofer diffraction through a circular aperture - simplest theory
% - far-field/plane-wave approx!
% Sound waves assumed to be propagating in free air/great wide-open!
%
%==============================================================================
%
% Written by Prof. Steven Errede Last Updated: Feb. 7, 2011 12:25 hr
%
%===============================================================================
close all;
clear all;
\begin{tabular}{lr} 
single & thtr(1800); \\
single & thtd(1800); \\
single & Itot1(1800); \\
single & SIL1(1800); \\
& \\
single & yscr(2000); \\
single & Itot2(2000); \\
single & SIL2(2000);
\end{tabular}
single Itotxy(2000,2000);
single LgItotxy(2000,2000);
single SILxy(2000,2000);
% Specify numerical values of parameters:
Io = 1.0; % intensity from single slit (Watts/m^2)
Ir = 1.0*10^-12;% reference sound intensity (Watts/m^2)
Vair = 343.0; % speed of propagation of sound - free air (m/s)
freq = 1000.0; % frequency (Hz or cps)
lambda = Vair/freq; % wavelength (m)
Lobs = 10.0; % observer distance (m) n.b. lambda << Lobs
% Specify the aperture radius (m):
Rapr = 1.0; % 0.1; 1.0; aperture radius (m) n.b. Rapr << Lobs
nu = 1; % order of bessel function of 1st kind (see below)
%===================================
% Calculate Itot vs. theta:
%===================================
Thetad = -90.0; % angle theta of observer in degrees
dTheta = 0.1; % step angle in degrees
for i = 1:1800;
    thtd(i) = Thetad; % angle theta of observer in degrees
    Thetar = (pi/180.0)*Thetad; % angle theta of observer in radians
    thtr(i) = Thetar;
    rho = ((2.0*pi*Rapr)/lambda)*sin(Thetar); % phase (radians)
    Itot1(i) = Io*((2.0*bessel(nu,rho))/rho)^2; % total intensity (Watts/m^2)
    SIL1(i) = 10.0*log10(Itot1(i)/Ir); % Sound Intensity Level (dB)
    Thetad = Thetad + dTheta; % increment angle for next calculation
end
figure(01);
plot(thtd,Itot1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. theta');
```

-13-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

```
figure(02);
semilogy(thtd,Itot1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. theta');
figure(03);
plot(thtd,SIL1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('SIL (dB)');
title('SIL vs. theta');
figure(04);
polar(thtr,SIL1,'b');
grid on;
xlabel('theta (degrees)');
ylabel('SIL (dB)');
title('Polar plot of SIL vs. theta');
%===================================
% Calculate Itot vs. yscreen:
%===================================
    y = -50.00; % starting position on screen (m)
dy = 0.05; % step size on screen (m);
for i = 1:2000;
    yscr(i) = y; % position of observer on perp. screen (m)
    Thetar = atan(y/Lobs); % angle theta of observer in radians
    rho = ((2.0*pi*Rapr)/lambda)*sin(Thetar); % phase (radians)
    Itot2(i) = Io*((2.0*bessel(nu,rho))/rho)^2; % total intensity (Watts/m^2)
    SIL2(i) = 10.0*log10(Itot2(i)/Ir); % Sound Intensity Level (dB)
    y = y + dy; % increment screen position for next calculation
end
figure(11);
plot(yscr,Itot2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Intensity vs. Yscreen');
figure(12);
semilogy(yscr,Itot2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^{2})');
title('Log10 Intensity vs. Yscreen');
figure(13);
plot(yscr,SIL2,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('SIL (dB)');
title('SIL vs. Yscreen');
```

```
beep;
```

beep;
fprintf('\n Very CPU-intensive I(x,y) vs. x,y calcs - please be patient!! \n')
fprintf('\n Very CPU-intensive I(x,y) vs. x,y calcs - please be patient!! \n')
%==
%==
%===
% Calculate 2D Itot vs. x,y-screen:
%===
x = -50.00; % x-starting position on screen (m)
dx = 0.05; % x-step size on screen (m);
for j = 1:2000;
xscr(j) = x; % x-position of observer on perp. screen (m)

```
                            -14-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.
```

 y = -50.00; % y-starting position on screen (m)
 dy = 0.05; % y-step size on screen (m);
 for i = 1:2000;
 yscr(i) = y; % y-position of observer on perp. screen (m)
 rscr = sqrt((xscr(j))^2 + (yscr(i))^2); % radial pos'n on perp. screen (m)
 Thetar = atan(rscr/Lobs); % angle theta of observer in radians
 rho = ((2.0*pi*Rapr)/lambda)*sin(Thetar); % phase (radians)
 Itotxy(j,i) = Io*((2.0*bessel(nu,rho))/rho)^2; % total intensity (Watts/m^2)
 LgItotxy(j,i) = log10(Itotxy(j,i)); % log10 of total intensity (Watts/m^2)
SILxy(j,i) = 10.0*log10(Itotxy(j,i)/Ir); % Sound Intensity Level (dB)
y = y + dy; % increment y-screen position for next calculation
end
x = x + dx; % increment x-screen position for next calculation
end
figure(21);
surf(xscr,yscr,Itotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Intensity (Watts/m^{2})');
title ('Intensity vs. Xscreen-Yscreen');
figure(22);
surf(xscr,yscr,LgItotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Log10(Intensity) (Watts/m^{2})');
title ('Log10(Intensity) vs. Xscreen-Yscreen');
figure(23);
surf(xscr,yscr,SILxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('SIL (dB)');
title ('SIL vs. Xscreen-Yscreen');
%===
beep;
fprintf('\n Calculation of diffraction through circular aperture completed !!! \n')

```
```

