Diffraction Through a Rectangular Aperture - Simplest Theory

In this example, we show plots of the sound intensity vs. angles and observer/listener position $x_{\text {screen }}, y_{\text {screen }}$ on a screen for the simplest theory of Fraunhofer diffraction through a rectangular aperture of vertical height a and horizontal width b. The observer/listener is located far from the rectangular aperture, at a perpendicular distance $L(m)$ away, such that the conditions $b, a \ll L$.and. $\lambda \ll L$ both hold simultaneously, where $\lambda(m)$ is the wavelength of the sound - this is the so-called "far-field" limit.

The expression for diffraction through a rectangular aperture in this simplest theory is given by:

$$
\begin{equation*}
I_{\text {tot }}(\theta)=I_{o}\left\{\frac{\sin \delta_{y}}{\delta_{y}}\right\}^{2} \cdot\left\{\frac{\sin \delta_{x}}{\delta_{x}}\right\}^{2} \equiv I_{o} \operatorname{sinc}^{2} \delta_{y} \cdot \operatorname{sinc}^{2} \delta_{x} \text { and } \operatorname{SIL}(\theta) \equiv 10 \log _{10}\left(I_{\text {tot }}(\theta) / I_{\text {ref }}\right) \tag{dB}
\end{equation*}
$$

where $I_{o}\left(\right.$ Watts $\left./ m^{2}\right)$ is the maximum sound intensity associated with the single slit, the phases $\delta_{y}=(\pi a / \lambda) \sin \theta_{y}$ and $\delta_{x}=(\pi b / \lambda) \sin \theta_{x}$ (radians) where $\theta_{y}=\tan ^{-1}\left(y_{\text {screen }} / L\right)$ and $\theta_{x}=\tan ^{-1}\left(x_{\text {screen }} / L\right)$. Then: $r_{\text {screen }}=\sqrt{x_{\text {screen }}^{2}+y_{\text {screen }}^{2}}$ and $\theta=\tan ^{-1}\left(r_{\text {screen }} / L\right)$. $I_{\text {ref }} \equiv 10^{-12}\left(\mathrm{Watts} / \mathrm{m}^{2}\right)$ is the reference sound intensity for the sound intensity level (SIL).

Diffraction minima (intensity zeroes) occur when $\delta_{y}=(\pi a / \lambda) \sin \theta_{y}= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots= \pm m \pi$, $m=1,2,3, \ldots$ and $\delta_{x}=(\pi b / \lambda) \sin \theta_{x}= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots= \pm n \pi, n=1,2,3, \ldots$.

We coded up the above formulas using MATLAB to make plots of $I_{\text {tot }} v s . \theta_{x}, \theta_{y}$ and $I_{\text {tot }}$ vs. $x_{\text {screen, }} y_{\text {screen }}$ e.g. for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m}),(1.0 \mathrm{~m}, 0.5 \mathrm{~m})$ and $(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$ with the following parameter values: $I_{o}=1 \mathrm{Watt} / \mathrm{m}^{2}$, observer/listener distance (at $\theta_{y}=\theta_{x}=\theta=0$) of $L=10 \mathrm{~m}$, the speed of propagation in free air/great-wide open: $v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ and frequency of $f=1000 \mathrm{~Hz}$, thus $\lambda=v_{\text {air }} / f=0.345 \mathrm{~m}$.

In the following figures, note that the angular width of the central maxima in the y - (x-) direction decreases as the aperture width b (aperture height a) increases, since the phases $\delta_{y}=(\pi a / \lambda) \sin \theta_{y}$ and $\left(\delta_{x}=(\pi b / \lambda) \sin \theta_{x}\right)$ are linearly proportional to a. (b) respectively. Note also that the angular width of the central maxima in the y - $(x-)$ direction increases linearly with increasing frequency f, since the phase differences both increase linearly with frequency:

$$
\delta_{y}=(\pi a / \lambda) \sin \theta_{y}=\left(\pi a f / v_{\text {air }}\right) \sin \theta_{y} \text { and } \delta_{x}=(\pi b / \lambda) \sin \theta_{x}=\left(\pi b f / v_{\text {air }}\right) \sin \theta_{x}
$$

Linear and Semilog Plots of $I_{\text {tot }}$ vs. θ_{x} for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m})$:

-2-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

Plots of SIL vs. θ_{x} and SIL vs. $x_{\text {screen }}$ for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m})$:

Linear and Semilog Plots of $I_{t o t} v s . \theta_{y}$ for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m})$:

-5-

Linear and Semilog Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m})$:

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Plots of SIL vs. θ_{y} and SIL vs. $y_{\text {screen }}$ for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m})$:

-7-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m})$:

theta-x (degrees)

theta-y (degrees)
-8-

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ and SIL vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $(b, a)=(0.1 \mathrm{~m}, 0.2 \mathrm{~m})$:

-9-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Linear and Semilog Plots of $I_{\text {tot }}$ vs. θ_{x} for $(b, a)=(1.0 \mathrm{~m}, 0.5 \mathrm{~m})$:

-10-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

$$
\text { Linear and Semilog Plots of } I_{\text {tot }} \text { vs. } x_{\text {screen }} \text { for }(b, a)=(1.0 \mathrm{~m}, 0.5 \mathrm{~m}) \text { : }
$$

-11-

Plots of SIL vs. θ_{x} and SIL vs. $x_{\text {screen }}$ for $(b, a)=(1.0 \mathrm{~m}, 0.5 \mathrm{~m})$:

-12-

Linear and Semilog Plots of $I_{t o t}$ vs. θ_{y} for $(b, a)=(1.0 \mathrm{~m}, 0.5 \mathrm{~m})$:

-13-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Linear and Semilog Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $(b, a)=(1.0 \mathrm{~m}, 0.5 \mathrm{~m})$:

-14-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Plots of SIL vs. θ_{y} and SIL vs. $y_{\text {screen }}$ for $(b, a)=(1.0 \mathrm{~m}, 0.5 \mathrm{~m})$:

-15-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $(b, a)=(1.0 m, 0.5 m)$:

-16-

Plots of $I_{\text {tot }}$ vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ and SIL vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $(b, a)=(1.0 \mathrm{~m}, 0.5 \mathrm{~m})$:

Linear and Semilog Plots of $I_{\text {tot }}$ vs. θ_{x} for $(b, a)=(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$:

-18-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

-19-

Plots of SIL vs. θ_{x} and SIL vs. $x_{\text {screen }}$ for $(b, a)=(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$:

-20-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Linear and Semilog Plots of $I_{t o t} v s . \theta_{y}$ for $(b, a)=(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$:

-21-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Linear and Semilog Plots of $I_{\text {tot }}$ vs. $y_{\text {screen }}$ for $(b, a)=(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$:

-22-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

Plots of SIL vs. θ_{y} and SIL vs. $y_{\text {screen }}$ for $(b, a)=(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$:

-23-

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments
Plots of SIL vs. θ_{x} and SIL vs. θ_{y} for $(b, a)=(1.0 m, 0.5 m)$:

-24-

Plots of $I_{\text {tot }} v s .\left(x_{\text {screen }}, y_{\text {screen }}\right)$ and SIL vs. $\left(x_{\text {screen }}, y_{\text {screen }}\right)$ for $(b, a)=(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$:

-25-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

Listing of the MATLAB code:

```
%================================================================================
% Diffn_Rect_Aperture_Thy.m
%
% Diffraction through a rectangular aperture
% - simplest theory - far-field/plane-wave approx!
% Sound waves assumed to be propagating in free air/great wide-open!
%
%=============================================================================
%
% Written by Prof. Steven Errede Last Updated: Feb. 7, 2011 13:15 hr
%
%===============================================================================
close all;
clear all;
\begin{tabular}{|c|c|}
\hline single & 800) \\
\hline single & thtxd(1800); \\
\hline single & thtyr(1800); \\
\hline single & thtyd(1800); \\
\hline single & Itotxt(1800); \\
\hline single & Itotyt(1800); \\
\hline single & SILxt(1800); \\
\hline single & SILyt(1800) \\
\hline
\end{tabular}
single xscr(2000);
single yscr(2000);
single Itotxs(2000);
single Itotys(2000);
single SILxs(2000);
single SILys(2000);
single Itotxy(2000,2000);
single LogItotxy(2000,2000);
single SILxy(2000,2000);
% Specify x, y dimensions of the rectangular aperture:
Bx = 0.1; % 0.1; 1.0; 1.0; % x-axis is horizontal
Ay = 0.2; % 0.2; 0.5; 1.0; % y-axis is vertical
% Specify other needed parameters:
Io = 1.0; % intensity from single slit (Watts/m^2)
Ir = 1.0*10^-12;% reference sound intensity (Watts/m^2)
Vair = 343.0; % speed of propagation of sound - free air (m/s)
freq = 1000.0; % frequency (Hz or cps)
lambda = Vair/freq; % wavelength (m)
Lobs = 10.0; % perp. distance observer from slits (m) n.b. lambda << Lobs
```

```
%=====================================
% Calculate 1-D Itot vs. theta-x,y:
% along x = 0 y-axis and y = 0 x-axis:
%=====================================
Thetad = -90.0; % x-angle of observer in degrees
dTheta = 0.1; % x-step angle in degrees
for i = 1:1800;
    thtxd(i) = Thetad; % x-angle of observer in degrees
    Thetax = (pi/180.0)*Thetad; % x-angle of observer in radians
    thtxr(i) = Thetax;
        deltax = (pi*Bx/lambda)*sin(Thetax); % resultant x-phase diff (radians)
    Itotxt(i) = Io*(sin(deltax)/deltax)^2; % total x-intensity (Watts/m^2)
    SILxt(i) = 10.0*log10(Itotxt(i)/Ir); % Sound Intensity Level (dB)
        Thetad = Thetad + dTheta; % increment x-angle for next calculation
end
```

Thetad $=-90.0 ; \quad \%$ y-angle of observer in degrees
dTheta $=0.1 ; \quad \%$ y-step angle in degrees

UIUC Physics 406POM Acoustical Physics of Music/Musical Instruments

```
for i = 1:1800;
    thtyd(i) = Thetad; % y-angle of observer in degrees
    Thetay = (pi/180.0)*Thetad; % y-angle of observer in radians
    thtyr(i) = Thetay;
        deltay = (pi*Ay/lambda)*sin(Thetay); % resultant y-phase diff (radians)
    Itotyt(i) = Io*(sin(deltay)/deltay)^2; % total y-intensity (Watts/m^2)
    SILyt(i) = 10.0*log10(Itotyt(i)/Ir); % Sound Intensity Level (dB)
    Thetad = Thetad + dTheta; % increment angle for next calculation
end
figure(01);
plot(thtxd,Itotxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('I(theta-x) (Watts/m^{2})');
title('I(theta-x) vs. theta-x on Y = 0 axis');
figure(02);
semilogy(thtxd,Itotxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('I(theta-x) (Watts/m^{2})');
title('Log10 I(theta-x) vs. theta-x on Y = 0 axis');
figure(03);
plot(thtyd,Itotyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('I(theta-y) (Watts/m^{2})');
title('I(theta-y) vs. theta-y on X = 0 axis');
figure(04);
semilogy(thtyd,Itotyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('I(theta-y) (Watts/m^{2})');
title('Log10 I(theta-y) vs. theta-y on X = 0 axis');
figure(05);
plot(thtxd,SILxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('SIL(theta-x) (dB)');
title('SIL(theta-x) vs. theta-x on Y = 0 axis');
figure(06);
plot(thtyd,SILyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('SIL(theta-y) (dB)');
title('SIL(theta-y) vs. theta-y on X = 0 axis');
figure(07);
polar(thtxr,SILxt,'b');
grid on;
xlabel('theta-x (degrees)');
ylabel('SIL(theta-x) (dB)');
title('Polar plot of SIL(theta-x) vs. theta-x on Y = 0 axis');
figure(08);
polar(thtyr,SILyt,'b');
grid on;
xlabel('theta-y (degrees)');
ylabel('SIL(theta-y) (dB)');
title('Polar plot of SIL(theta-y) vs. theta-y on X = 0 axis');
```

$\%================================$

```
% Calculate 1-D Itot vs. x,y-screen:
% along x = 0 y-axis and y = 0 x-axis:
%=====================================
x = -50.00; % starting position on screen (m)
dx = 0.05; % step size on screen (m);
for i = 1:2000;
        xscr(i) = x; % position of observer on perp. screen (m)
        Thetax = atan(x/Lobs); % angle theta of observer in radians
        deltax = (pi*Bx/lambda)*sin(Thetax); % resultant x-phase diff (radians)
    Itotxs(i) = Io*(sin(deltax)/deltax)^2; % total x-intensity (Watts/m^2)
    SILxs(i) = 10.0*log10(Itotxs(i)/Ir); % Sound Intensity Level (dB)
        x = x + dx; % increment screen position for next calculation
end
    y = -50.00; % starting position on screen (m)
dy = 0.05; % step size on screen (m);
for i = 1:2000;
    yscr(i) = y; % position of observer on perp. screen (m)
    Thetay = atan(y/Lobs); % angle theta of observer in radians
    deltay = (pi*Ay/lambda)*sin(Thetay); % resultant y-phase diff (radians)
    Itotys(i) = Io*(sin(deltay)/deltay)^2; % total y-intensity (Watts/m^2)
    SILys(i) = 10.0*log10(Itotys(i)/Ir); % Sound Intensity Level (dB)
    y = y + dy; % increment screen position for next calculation
end
```

figure(11);
plot(xscr, Itotxs,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Intensity vs. Xscreen on $Y=0$ axis');
figure(12);
semilogy(xscr,Itotxs,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Log10 Intensity vs. Xscreen on $\mathrm{Y}=0$ axis');
figure(13);
plot(yscr,Itotys,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Intensity vs. Yscreen on $\mathrm{X}=0$ axis');
figure(14);
semilogy(yscr,Itotys,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('Intensity (Watts/m^\{2\})');
title('Log10 Intensity vs. Yscreen on X = 0 axis');
figure(15);
plot(xscr,SILxs,'b');
grid on;
xlabel('Xscreen (m)');
ylabel('SIL(Xscreen) (dB)');
title('SIL(Xscreen) vs. Xscreen on $Y=0$ axis');
figure(16);
plot(yscr,SILys,'b');
grid on;
xlabel('Yscreen (m)');
ylabel('SIL(Yscreen) (dB)');
-28-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2013. All rights reserved.

```
title('SIL(Yscreen) vs. Yscreen on X = 0 axis');
```

```
%===============================================================================
beep;
fprintf('\n Very CPU-intensive I(x,y) vs. x,y calcs - please be patient!! \n')
%=============================================================================
%=========================================
% Calculate 2D Itot vs. x,y-screen:
%========================================
    x = -50.00; % starting position on screen (m)
dx = 0.05; % step size on screen (m);
for j = 1:2000;
        xscr(j) = x; % x-pos'n of observer on perp. screen (m)
        Thetax = atan(x/Lobs); % x-angle of observer in radians
        deltax = (pi*Bx/lambda)*sin(Thetax); % resultant x-phase diff (radians)
            Itotx = Io*(sin(deltax)/deltax)^2; % total x-intensity (Watts/m^2)
        y = -50.00; % starting position on screen (m)
        dy = 0.05; % step size on screen (m);
        for i = 1:2000;
            yscr(i) = y; % y-pos'n of observer on perp. screen (m)
            Thetay = atan(y/Lobs); % y-angle of observer in radians
            deltay = (pi*Ay/lambda)*sin(Thetay); % resultant y-phase diff (radians)
                    Itoty = Io*(sin(deltay)/deltay)^2; % total y-intensity (Watts/m^2)
            Itotxy(j,i) = Itotx*Itoty/Io; % total intensity (Watts/m^2)
    LogItotxy(j,i) = log10(Itotxy(j,i));
            SILxy(j,i) = 10.0*log10(Itotxy(j,i)/Ir); % Sound Intensity Level (dB)
                y = y + dy; % increment screen position for next calculation
        end
            x = x + dx; % increment screen position for next calculation
end
```

figure(21);
surf(xscr,yscr, Itotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Intensity (Watts/m^\{2\})');
title ('Intensity vs. Xscreen-Yscreen');
figure(22);
surf(xscr,yscr, LogItotxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('Log Intensity (Watts/m^\{2\})');
title ('Log Intensity vs. Xscreen-Yscreen');
figure(23);
surf(xscr, yscr, SILxy);
shading interp;
xlabel('Xscreen (m)');
ylabel('Yscreen (m)');
zlabel('SIL (dB)');
title ('SIL vs. Xscreen-Yscreen');
$\%===$
beep;
fprintf('\n Diffn Thru Rect Aperture Simple Thy Calculation completed !!! \n')

