C-Chord (chord.wav)

C-Chord clipped at ${ }^{1} / 10$ of the maximum amplitude

Notes12.wav

Notes12 pitch shifted up 25 Hz

Notes 12 with Imaginary frequency components removed

Notes 12 with frequencies above 250 Hz removed

Notes 12 with frequencies below 250 Hz removed

B8
Nonlinear Distortion $[\mathrm{K}=1, \mathrm{~A}=1]$
220 Hz WAV file
$220 \mathrm{w} /$ Quadratic Non-Linearity $\varepsilon=.25$
220 w/ Cubic Non-Linearity $\varepsilon=.25$
$220 \mathrm{w} /$ Quadratic Non-Linearity $\varepsilon=-.25$
$220 \mathrm{w} /$ Cubic Non-Linearity $\varepsilon=-.25$
$220 \mathrm{w} /$ Cubic Non-Linearity $\varepsilon=-4 / 3$
I accidentally labeled it 440.wav here, but the waveform below is a 220 Hz WAV file.

4) ExvoX Ware Editom - 440 may		
m-140.wav - - 回x		- \square alx
	11	
	1]	
	Whromemmax	
For Halp plestict	Taxa 4000 Cut 1003 Sol	Forna Whelina POM Fieq 44100
) 36

Exponential Non-Linearities $[\mathrm{K}=1, \mathrm{~A}=1]$
220 Hz WAV File
$220 \mathrm{w} /$ Exponentially-Growing Non-Linearity $\alpha=1$
220 w/ Exponentially-Decaying Non-Linearity $\alpha=1$
I accidentally labeled it 440.wav here, but the waveform below is a 220 Hz WAV file.

B10
Chord WAV
Chord WAV file run through exponentially-growing non-linearity distortion Chord WAV file run through exponentially-decaying non-linearity distortion where $\alpha=5, \mathrm{~K}=1, \mathrm{~A}=1$

B11

Chord WAV file
Chord WAV file run through exponentially-growing non-linearity distortion
Chord WAV file run through exponentially-decaying non-linearity distortion
where $\alpha=5, \mathrm{~K}=1, \mathrm{~A}=1$

Intermodulation - No Distortion [K = $\left.\mathrm{A}_{1}=\mathrm{A}_{2}=1\right]$
Plain 1000 Hz wave
1000 Hz wave +950 Hz wave
1000 Hz wave +150 Hz wave

Intermodulation $\rightarrow \varepsilon=.25$ Quadratic Distortion $\left[\mathrm{K}=\mathrm{A}_{1}=\mathrm{A}_{2}=1\right]$

1000 Hz wave +950 Hz wave Clean
1000 Hz wave +150 Hz wave Clean

1000 Hz wave +950 Hz wave Distorted 1000 Hz wave +150 Hz wave Distorted

$$
\text { Intermodulation } \rightarrow|\varepsilon|=1 \text { Cubic Distortion }\left[\mathrm{K}=\mathrm{A}_{1}=\mathrm{A}_{2}=1\right]
$$

1000 Hz wave +950 Hz wave Clean	1000 Hz wave +150 Hz wave Clean
1000 Hz wave +950 Hz wave $\varepsilon=1$	1000 Hz wave +150 Hz wave $\varepsilon=1$
1000 Hz wave +950 Hz wave $\varepsilon=-1$	1000 Hz wave +150 Hz wave $\varepsilon=-1$

Ring Modulation

220 Hz Sine Wave
220 Ring Modulated with $73 \frac{1}{3} \mathrm{~Hz}$ sine 220 Ring Modulated with 220 Hz sine

Notes12.wav
Notes 12 Ring Modulated with 100 Hz sine Notes 12 Ring Modulated with 440 Hz sine

Flanging / Phasing
Notes21.wav
Notes 21 flanged ($3.5 \mathrm{~ms}, 1 \mathrm{~ms}, 1 / 3 \mathrm{~Hz}$)

Notes21 flanged ($1 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 / 3 \mathrm{~Hz}$)
Notes 21 phased ($1 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 / 3 \mathrm{~Hz}$)
(D, S, f) = Average Delay Time, Time Amplitude of LFO, Frequency of LFO mix amplitude $=$ original amplitude $(\mathrm{A}=1)$

