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Abstract:   
 The sustain of a guitar, that is, the amount of time a note will resonate before fading 
away due to natural dampening effects, has been the subject of much conjecture and endless 
speculation for as long as acoustic and electric guitars have been played.  Due to the importance 
of sustain in determining the overall sound quality and playability of a guitar, however, such 
speculation and debate surrounding the issue of guitar sustain is justifiable.  Unfortunately, 
much of this speculation derives from the inexact qualitative methods characteristically used to 
describe sustain, usually based on the human ear and a perceived sense of how strong a note 
sounds for a given span of time.  Indeed, many claims have been made concerning the effect that 
adding weight to the headstock of a guitar, playing with new strings, playing in certain kinds of 
weather, etc., has on increasing the sustain of a guitar.  Although such reports give a basis for 
some interesting speculation, many of them suffer for lack of quantifiable evidence.   
 
 This experiment seeks to establish at least the beginnings of using objective and 
quantifiable measurements taken in a laboratory setting to begin the scientific investigation of 
confirming or refuting many of these claims.  Although the setup of the equipment used to make 
these measurements, and, more importantly, the writing of the code used in the computer 
program developed to take the essential data, was the most time consuming step in the process 
of doing the experiment, the underlying principle used to measure the sustain of a guitar was 
quite simple.  Put concisely, when attached to the leads of the guitar pickup, the equipment and 
program allowed us to take direct measurements of the oscillating voltages produced by an 
electric guitar after exciting its strings.  As with all electric guitars, the amplitudes of these 
oscillating voltages are directly proportional to the magnitude of the vibrations of the strings of 
the guitar, and the subsequent measuring of this voltage amplitude as it decreased with time then 
yielded the raw information needed to do calculations related to the sustain of the guitar, both 
overall (picking multiple strings at once) and on a single string-by-string basis.  However, due to 
the desirability of keeping this experiment as simple and controlled as possible, only the sustain 
of single strings was measured in this experiment.  In particular, voltage data were collected for 
each of the vibrating open guitar strings, that is, for notes low E, A, D, G, B, and high E.  Also, 
the effect on dampening caused by raising or lowering the height of the strings above the guitar 
pickup, i.e. adjusting the action, was also measured for an open D string. 
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A Simple Illustration of what Fourier (Harmonic) Analysis is:   

In order to construct an objective means for measuring the sustain of a guitar string, it is not 
enough to simply measure one overall amplitude of the voltages produced by the string 
vibrations and see how this single voltage amplitude decreases with time.  If this were the case 
(see Figure (1)), we would effectively be saying that a vibrating guitar string has only one local 
maxima and that it looks the same as, for example, a single jump rope being swung back and 
forth between its two fixed ends.  Instead, an actual vibrating guitar string looks more like the 
adding together (superposition) of multiple jump rope segments (see Fig.(2), each with varying 
amplitudes and lengths that are contained within a largest jump rope.  This superposition 
principle, that is, the adding together of multiple jump rope segments to form a more 
complicated pattern, can be seen in Fig.(3) and (4).  In viewing Fig.(3) and (4) it is important to 
note that the length of the smaller internal “jump ropes” must be fractional multiples (1/2, 1/3, 
1/4, . . . ,1/n) of the length of the largest “jump rope”.  Correspondingly, the wavelengths and 
therefore frequencies of each of the smaller jump rope segments must be multiples of the 
fundamental frequency.   
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Example of Superposition/Decomposition: 
                   (shows how a wave such as in Fig.(2) 
                    might be built up and/or taken apart) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In principle, just as the “jump rope” pattern in Fig.(4) above was put together by adding the 
multiple jump rope segments of Fig.(3) together, the same jump rope pattern (henceforth called 
the “waveform”) can conversely undergo a process whereby it is decomposed in order to 
retrieve its individual jump rope segments as seen in Fig.(3).  The point of this jump rope 
analogy is that each of these individual jump rope segments can be considered as an individual 
harmonic (a.k.a. vibrational mode) of the overall waveform.  Moreover, the point of Fourier 
analysis is to effectively decompose a complicated waveform in such a way as to extract its 
constituent “jump rope” segments.   In a mathematical expression, these jump rope elements 
can be represented as a mixture of sine and cosine terms of varying frequencies, which, when 
added together (superimposed) will yield a function f(x) that, using an infinite number of 
harmonics, exactly replicates the appearance of the original waveform.  The formula used for 
this superposition of sine and cosine terms was developed by Joseph Fourier in 1822 and, 
astonishingly enough, it can be used to replicate any well-behaved periodic function, of which a 
repeating waveform is only one example.  The most basic form of this formula is as follows: 
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As a matter of keeping the right terminology, it is important to remember in the above 
discussion that the “jump rope” corresponding to n = 1 in Equ.(1) above represents the 1st or 
fundamental harmonic, also called the fundamental harmonic, the “jump rope” corresponding 
to n = 2 represents the 2nd harmonic, the “jump rope” corresponding to n = 3 represents the 
third harmonic, and so on.   
 
Furthermore, we can deduce from Equ.(1) that each cosine and sine term in the infinite series 
must have a different periodicity, e.g. sin(2x) for n = 2 has half the period (twice the frequency) 
of sin(x) for n = 1.  Also, it is evident that each cosine and sine term is multiplied by its own 
coefficient, an  and bn  . 
Since we are modeling a vibrating guitar string of a given length, Equ.(1) can be put into a 
more usable form.  If the function is periodic over spans of length 2L, (rather than having a 
period of 2π  radians as in Equ.(1) above), and letting x measure length along the guitar string, 
Equ.(1) can be scaled over the entire length L of the guitar string as follows: 
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In Equ.(1) and (2), although it is easily seen that the periodicity of the sine and cosine 

terms each decreases by predictable fractional amounts as n increases, what isn’t obvious in the 
above summation is how to find the magnitudes of the coefficients an and bn that multiply each 
sine and cosine term.  The phrase “Fourier analysis” refers to the method used to solve for the 
magnitudes of the coefficients a
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experiment, these coefficients are important because they are the quantities that decrease with 
time and which can consequently be used to mathematically model the overall dampening of 
the guitar string vibrations for each harmonic.  Rearranging Equ.(2) above and using the 
mathematical properties of inner products, the magnitudes of a

n
 and b

n
 can be solved for 

according to the following formulas:   
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Thus if we have some idea of what f(x) may be (such as, for example, the symmetric triangular 
wave produced the instant after the guitar string is plucked as shown in Fig.(7) below), we can 
then iteratively use Equ.(3) to find as many an and bn’s as we like (more and more iterations 
allows us to find the coefficients an and bn  of higher and higher harmonics, which in turn 
contributes to a greater degree of precision when decomposing the waveform).  Although f(x) 
changes with time, the shape of the waveform can usually be elicited at any time t and then we 
can perform a Fourier analysis to obtain the magnitudes of a0 , an  , and bn to see how they 
decrease with time. 
 
At this point, it is helpful to recall some of the physical parameters of a vibrating guitar string.    
First, one quickly notices that all cosine terms must vanish because the ends of the strings are 
fixed and so the amplitudes of the string at position x = 0 and x = L must equal 0 for all time t, 
therefore an = 0 for all n.  As a result, the Fourier series modeling the vibration of the string 
given in Equ.(2) can therefore be reduced to a series of sine terms, which makes it an odd 
function.  However, even though we have thus reduced Equ.(2) to a more simplified version, 
this does not at all mean that a mathematical expression can be used to model the physical 
shape, i.e. waveform, of a vibrating guitar string.  In fact, a mathematical trick must be used so 
that this series of sine terms can be equated to the function f(x) representing the actual physical 
shape of the waveform, which in present form is not periodic (the shape of the waveform does 
not repeat itself over the length of the guitar string), nor can it necessarily be called an odd 
function.  To make the waveform and the Fourier sine series compatible, the waveform can be 
theoretically reflected about the origin, thereby making it an odd function and giving it a 
periodicity of 2L (see Figures (5) and (6) below): 
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Note that, in hindsight, since Equ.(2) can only be applied to periodic functions, this reflection 
about the origin is the “behind the scenes” technique that is necessary to make Fourier analysis 
at all applicable to the problem of decomposing the vibrating string into its constituent 
harmonics.  
 
 A second deduction easily made by considering the physical parameters of a vibrating 
guitar string is that a

0
 = 0 in Equ.(2).  The coefficient a

0
/2 represents the offset distance on the 

ordinate axis of the Fourier series in Equ.(2), i.e., if a
0
/2  is positive then the entire function 

moves upwards a distance a
0
/2.  Since there is no offset distance in the modeling of a guitar 

string vibration (no DC offset in the oscillating voltages induced by the vibrating string), then 
we know a

0
 = 0.   

 
 Taken together, these considerations yield a simplified version of Equ.(2): 
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from which we need only employ Equ.(3c) to find the bn’s for as many harmonics as we see fit. 
 
 Example of obtaining Fourier series for a waveform  
As an example of calculating an actual Fourier series for a given waveform at t=0 (the instant 
after the string is plucked), suppose that an open guitar string is plucked right at its midpoint 
(above the 12th fret) so that, after reflection about the origin, the initial waveform has the 
following initial profile (known as a triangle wave): 
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From the above diagram, the waveform can be constructed by the following well-behaved 
piecewise function: 
 
f(x) = 8x/L           for 0 < x < L/2 
f(x) = -8x/L + 8     for L/2 < x < L 
 
To get the Fourier sine series, we must solve for bn in Equ.(4) using Equ.(3c).  Using  Formula 
(3c), after noting that both f(x) and sin(πnx/L) are odd functions and that the product of two 
odd functions is an even function which permits us to halve the limits of integration and 
multiply by a factor of 2, we have the following: 
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After performing the necessary but messy integration we compute bn  as follows: (for a more 
detailed version of how to calculate bn see “Fourier Analysis III: Examples of the Use of 
Fourier Analysis” by Professor Steven Errede, Department of Physics, University of Illinois at 
Urbana-Champaign, IL, copyright 2000) 
 
                 bn  = 0                     for n = 2, 4, 6, 8 , . . .etc. 
      bn  = +8•(2/nπ)2      for n = 1, 5, 9, 13, . . . etc. 
       bn  = -8•(2/nπ)2       for n = 3, 7, 11, 15 . . . etc. 
 
After plugging these values for bn into Equ.(4), the entire Fourier series can then be represented 
compactly as follows: 
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   Expanding the above over the first few terms we have: 
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Note that this example shows how the magnitude of bn decreases by a factor of 1/n2 for 
increasing (odd) values of n.  Thus, given that the Fourier coefficients b1, b2, b3, . . .,bn 
represent the amplitudes of the 1st, 2nd, 3rd,. . . ,nth harmonic, respectively,  it can be seen from 
this example (and similarly for other examples of the same type such as an asymmetrical 
triangular curve) that the amplitudes decrease very quickly with increasing harmonic number n 
for a waveform at a given time t. 
 
So going back to the point of doing Fourier analysis, Fourier analysis must be performed on a 
given waveform, i.e., the waveform must be represented as a Fourier series, in order to make 
any sense out of the decay in amplitude of the individual harmonics of the waveform as a 
function of time.  Since the overall waveform is theoretically nothing more than the 
superposition (summation) of its harmonics, the decreasing amplitude of each harmonic can be 
tracked by applying Fourier analysis to the waveform.  Measuring the decrease in the 
amplitudes of the harmonics over time is the only precise way of objectively measuring the 
sustain of vibrating guitar strings. 
 

Measuring Decay Rates 
Next, in the interests of making quantitative measurements to monitor and compare different 
rates of guitar string dampening (e.g. to compare decay rates among different harmonics of the 
same string, different open strings on the same guitar, and (perhaps in later experiments) the 
same strings on different guitars) we need to set a baseline standard and/or develop a 
mathematical tool that allows us to make such comparisons.  The formulation of a time 
constant τ (Greek letter Tau) gives us just such a tool.  Say we want to graph the vibrations of a 
particular harmonic as a function of time.  Then we would expect the magnitude of the 
vibrations, which initially starts as bn  (the Fourier coefficient for the nth harmonic), to 
decrease with time.  The graph of the lateral displacement of a general nth harmonic should 
look something like this: 
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Figure (8) 
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Although the overall displacement of the harmonics oscillates in a sinusoidal pattern, we are 
primarily interested in monitoring how the maximum heights (amplitudes) of the oscillations 
decrease with time.  With this in mind, we can form a “decay envelope” by making a best-fit 
curve going through the amplitudes of each oscillation.  Furthermore, since the negative parts 
of the oscillation also contain negative amplitudes to be considered as valuable data, we can 
take the absolute value of each of the oscillations, thereby producing the effect of reflecting the 
negative parts of the oscillations about the x axis and generating more amplitude points which 
will ultimately yield a more precise decay curve. (seen in Fig.(9) below)  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

In the above figure, note that the dampening factor e-(t / τ) in Equ.(6) and (7) arises out of the 
assumption that the amplitudes of an (ideal) vibrating string decay exponentially, which in fact 
is consistent with theories already developed to model dampening in string vibrations (for a 
more exhaustive explanation of more realistic (non-ideal) string dampening effects, see “Waves 
II: Vibrations of Real Strings” by Professor Steven Errede, Department of Physics, University 
of Illinois at Urbana-Champaign, IL, copyright 2000).   From Equ.(7), the time constant τ 
therefore represents the amount of time that must elapse for the amplitude to decrease by a 
factor of 1/e = 0.368, i.e., after one time constant has elapsed (t = τ) only 36.8% of the original 
amplitude (bn coefficient) remains.  The usefulness of τ can further be exploited if we 
manipulate Equ.(7) by taking the natural logarithm of g(t) to form a new function h(t): 
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f(t) =  bn* cos (ωt) e-(t / τ )     
Equation (6) 
 

Figure (9) 
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Where we are replacing the natural log of the Fourier coefficient, which is a constant, with 
another constant k1.  Note that Equ.(8) has effectively reduced the function g(t) for the 
exponential decay curve to an equation for a straight line with slope -( 1 / τ ) and y-intercept k1.  
The graph of the function h(x) looks like this: 
 
 
 
   
   
 
 
 
 
 
 
 
 
 
As can be seen from the decay line above (which is a semi-logarithmic plot of the original 
decay curve), the negative reciprocal of  τ appears in the expression for the slope of the 
function h(x) and is independent of the y-intercept k1.  Since k1 is directly proportional to the 
magnitude of the Fourier coefficient bn (which is the displacement at time = 0 before any 
dampening occurs), we see that the magnitude of the Fourier coefficient has no bearing on the 
rate of decay, i.e. slope, of the decay line.  Therefore the value of Tau remains independent of 
the initial displacement of the guitar string (it is controlled by the same natural dampening 
processes for a given vibration no matter what the initial value of the displacement).  This 
feature of Tau was of utmost importance in conducting this experiment because it meant that a 
standard way of plucking the guitar string in order to achieve the same initial displacement did 
not have to be developed, i.e., the string could be plucked with little force or with great force 
without affecting the slope of the decay line and the resulting calculation of the time constant 
(see caveat below).  Monitoring differences in the time constant indeed gives us a baseline 
standard for drawing comparisons among decay rates (sustains) for different guitar strings and 
even different harmonics of the same string.  Caveat:  Although the above description of Tau is 
useful for understanding the utility of Tau, the above description assumes that Tau is constant 
over the entire time interval during which the guitar string vibrates.  With this assumption in 
place, we could easily calculate a Tau for any two readings taken of bn separated by any 
arbitrary time interval.  In reality, however, different dampening processes (such as dampening 
caused by the stiffness of the strings, dampening caused by the air viscosity, etc.) are dominant 
only at certain time durations during the string’s vibration.  This leads to a more jagged decay 
line in Fig.(10) having varying slopes for different time intervals, each with its own 
characteristic Tau (see Discussion section below).  Thus in this experiment, in order to find 
specific Tau’s for each time interval in hopes of relating them to a specific dampening process 
dominant during that time interval, it is necessary to sample the amplitudes of the harmonics at 
many different times after the string is initially plucked.   
 
 
 

t2 t1 

h(t2)  

h(t1) 

k1 

time (t) 

h(t) = k1 - (1 / τ )∗ t   →  

h(t) 

slope  =  h(t2) – h(t1)     
             = -(1/τ )  

Figure (10) 

Equation (9) 



 

 11

 
 
Experimental Methods and Procedure: 

 
Monitoring Each Harmonic by Frequency 
At this point, it is appropriate to briefly explain the correlation between harmonics and 

the frequencies at which those harmonics occur within the waveform.  As commented above in 
the illustration using jump ropes, the length (or, more accurately, wavelength) through which, 
for example, the 3rd harmonic of a guitar string vibrates is 1/3 the wavelength (1/3*L) at which 
the 1st harmonic vibrates. Consequently, because of the fundamental relationship that holds 
between a wave’s  velocity, frequency, and wavelength according to the equation 

 

λ
v

f =    where f is the frequency , λ is the wavelength of the wave, and v  is the velocity at 

which the wave travels. 
 
It is obvious that frequency is inversely related to wavelength, and so a correlation can be made 
between these two physical parameters of a vibrating string.  (Note that since v is only a 
function of the string’s tension and mass per unit length, and neglecting the slight increase in 
tension caused by plucking the guitar string and the ensuing vibration that follows, v is constant 
for any given string.)  Since then each harmonic has its own amplitude bn, and, furthermore, 
each harmonic vibrates at its own specific frequency, it logically follows that each frequency 
can be assigned its own specific amplitude bn (which, incidentally, can be positive or negative).  
The computer program used in this experiment used frequency to keep track of the amplitudes 
of each corresponding harmonic. 
 
 As a quick example, it is a well-known fact that a properly tuned low E string vibrates 
at a frequency of 82.4 hertz (tuning the low E string to this frequency actually means the 1st 
(fundamental) harmonic of the open string is tuned to this frequency).  Given this information, 
it is easy to compute that the 3rd harmonic, since it has a wavelength 1/3 that of the 1st 
harmonic, will vibrate at a frequency of 3*82.4 hertz = 247.2 hertz.  Similarly, all higher 
harmonics will vibrate at increasing multiples of the frequency at which the 1st harmonic 
vibrates.  After performing Fourier analysis, we know, for example, what the value of b3 is that 
corresponds to the amplitude at which the 3rd harmonic vibrates. 
 

The Connection Between String Displacements and Induced Voltages 
As mentioned earlier, the electromagnetics of an electric guitar effectively converts the 

mechanical energy present in a vibrating guitar string into an oscillating voltage (as the guitar 
strings vibrate over the magnetic pickup of the guitar, the time-varying magnetic flux through 
the metal strings produces an oscillating voltage inside the coil of the magnetic pickup).   It 
turns out that, at least within the ideal dampening effects assumed in this experiment, 
electromagnetic theory predicts that the displacements of the guitar string are directly 
proportional, neglecting some phase change, to the oscillating voltages induced by these 
vibrations.  Thus, after including some constant of proportionality β, Equ.(6) and (7), which 
show the decay rate of harmonic displacement, can easily be recast into equations showing the 
decay rate of induced voltage oscillations for each harmonic: 
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            V(t) = β* f(t) = β* bn cos (ωt) e-(t / τ )  = A0 cos (ωt) e-(t / τ )          
Equ.(6a) 

                where β is some positive constant and A0 = β*bn    
 
   similarly,            
 

            Vamp(t)  = β* g(t) = β* bn  e
-(t / τ )  = A0 e

-(t / τ )                                                  
Equ.(7a) 

                where Vamp(t) = the amplitude of the voltage induced by a particular    
                harmonic’s contribution to the overall string vibration  
 

Note that if Equ.(7a) were to be graphed as in Fig.(10), although the y-intercept would change 
from k1 to some other constant k2, (where k2 = Ln (A0) ) , the graph would remain essentially 
unchanged and, most importantly, the slope -(1 / τ ) would remain unchanged.     
 

As per the caveat mentioned at the end of the “Measuring Decay Rates” section, finding 
two voltages for a given harmonic and then using Equ.(9) was not sufficient for finding a 
localized Tau.  Instead, our experiment entailed using a computer program to repetitively 
calculate, harmonic by harmonic, the Fourier coefficients over incremental time intervals so 
that an entire list (array) of decreasing A0‘s could be obtained for each harmonic.  Specifically, 
the computer program was set up to calculate Fourier coefficients over a range of 1,200 
frequencies, with each of these 1,200 coefficients calculated every 0.4 seconds over a run time 
of 10.4 seconds.  The computer program therefore constructed a 1,200×26 array using this 
methodology.  After a row of 26 (decreasing) A0’s had been found for a particular harmonic, a 
rate of decay for that harmonic, i.e. a localized τ, was easily calculated using two of the 26 
values for A0.   This was done using Equ.(8) with some slight modification made to reflect the 
fact that we are working with amplitudes of voltages instead of amplitudes of harmonic 
displacement.  Exchanging A0final  for g(t) and A0initial for bn  in Equ.(8) (absolute value signs 
excluded here for clarity; the computer program automatically took the absolute value of the 
oscillating voltage amplitudes) led to the following calculation enabling us to find τ:    

 
[ ] [ ])/exp()/exp( 000 ττ tLnALntALnALn iniinifinal −+=−=  

             )/(2 τtk −=  
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As an example, using actual data collected from an open low E string vibrating at 220.0 Hertz 
(corresponds to the third harmonic on a very untuned guitar) was as follows: 
 
Time Elapsed : 0.4 seconds 0.8 seconds 1.2 seconds  1.6 seconds  2.0 seconds 
A0 from F-Analysis: 0.0682 mV 0.0409 mV 0.0277 mV 0.0202 mV 0.0144 mV 
     

Plugging in consecutive values for A0  at t = 0.4 sec and A0 at t = 0.8 sec into Equ.(8) gives: 

[ ] [ ])/exp()0682(.)/exp()0682(.) .0409( ττ tLnLntLnLn −+=−=  
             )/(69.2 τt−−=    
                          -3.20 sec4.0:)/1(69.2 =∗−−= twheretτ    

                                                             τ = 0.782 sec 

Plugging in values for A0  at t = 0.4 sec and A0 at t = 2.0 sec into Equ.(8) gives: 

[ ] [ ])/exp()0682(.)/exp()0682(..0144)( ττ tLnLntLnLn −+=−=  
               )/(69.2 τt−−=    
                            -4.24 sec6.1:)/1(69.2 =∗−−= twheretτ    

                                                              τ = 1.03 sec 
 
  

Methods and Materials: 
To find the Fourier coefficients, the software program LabView 5.0 was used.  The actual 
hardware was hooked up and the software configured as follows: 
 
 The positive and ground terminal leads of the electric guitar used in this experiment 
were connected to an ADC board going to the computer that read voltages produced by the 
vibrations of the guitar strings.  These voltage readings were taken by LabView at intervals 
specified by the sampling rate, which the user was prompted to enter at the LabView user 
interface panel (e.g. if the user typed in a sampling rate 10,000, LabView would take voltage 
readings from the ADC every 0.1 millisecond).  LabView also prompted the user to enter the 
total number of samples to be taken, up to a maximum of 64,000 per trial.  So the desired total 
length of the sampling period was determined by the user and was just the number of samples 
divided by the sampling rate.  The sampling rate specified for each of the trials chosen was 
64,000, so the duration of each trial was 10.67 seconds.  This was thought to be an adequate 
period over which the decay of the vibrations in the strings could be measured. 
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Results: 
The results of the experiment were plotted and are seen in Appendix A and Appendix B.  For 
each of the trials done, it is important to note that the guitar string was plucked close to the 
bridge of the guitar (therefore producing a “brighter sound” characteristic of higher harmonics 
with relatively large amplitudes).  Appendix A shows the decreasing amplitude of the 1st and 
2nd harmonics for each open string over an interval of about 10 seconds, during which the 
dampening of the vibrations is clearly seen.  The plots of the decay curves for both the 1st and 
2nd harmonics are shown on both a regular and on a semi-log scale.  Appendix B shows for 
each open string the relative magnitudes of the vibrations for each string at a specific time 
measured over a frequency spectrum ranging from 2.5 to 3,000 hertz divided into 2.5 hertz 
intervals.  In these plots the relative magnitudes of the first five harmonics for each open string 
can be easily seen.  Finally, time constants for each of the vibrating strings were calculated 
after the initial plucking of the string over three specific time intervals:  0.8 to 3.2 seconds, 2 to 
6 seconds, and 6 to 8.8 seconds.  The results for the time constants are summarized in the table 
below: 
  

Discussion:   
As mentioned in the caveat above, the presence of different dampening processes will cause the 
values measured for Tau to change depending on which dampening process is most dominant 
for a specific time interval of the string’s vibration.  These dampening processes include, but 
are not limited to, energy losses due to the viscosity of air, the energy transferred from the 
string vibrations to produce sound waves in air, the energy transferred to overcome the stiffness 
of the strings, energy transfer to the non-rigid nut and bridge of guitar, and a wide number of 
other energy losses due to electromagnetic dissipation caused by the electric and magnetic 
interactions of the metal guitar strings vibrating over a magnetic pickup.  Each one of these 
energy loss mechanisms has its own characteristic time constant, and the total time constant 
can be formulated as the sum of the reciprocals of each of the individual time constants for 
each energy loss mechanism.  This can be represented as follows:   
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  where each τi is the time constant for an 

individual energy loss mechanism 
 

Equ.(6a) therefore becomes: 

                  V(t) = β* f(t) = β* bn cos (ωt) e-(t / τ )   

                            = A0 cos (ωt) e-t [ (1 / τ1 )+ (1 / τ2 ) +(1 / τ3 ) +. . .+ (1 / τn ) ]           
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As seen from the plots of the 1st and 2nd harmonics in Appendix A, it is noticeable that, 
for the open Low E, D, and B strings (strings for which the data seems reliable), the 2nd 
harmonic seems to display varying time constants while Tau for the 1st harmonic seems to be 
relatively constant.  For the Low E, D, and B strings, the decay line of the 2nd harmonic seems 
to have three distinct regions:  a fairly steep segment (small Tau) shortly after the string is 
plucked, an intermediate segment of lesser slope (greater Tau), and then near the end of its 
timed vibration another segment of different slope.  In the case of the open B string shown in 
Appendix A4, the decay line for the 1st harmonic shows a rather interesting behavior.  
Immediate after the string is plucked the vibration shows very quick decay, but after this 
immediate decay (after about 2.5 seconds has elapsed) the magnitude of the 1st harmonic 
oscillations actually increases for a period of time.  Although this does not make physical sense 
in the case of an ideal vibrating string (the string cannot gain energy with time to increase the 
magnitude of its oscillations), in the non-ideal case there exists the possibility that the 
oscillation may be amplified by the coupling of the string vibration with the vibrations of the 
non-rigid end supports. 

 
As a general trend, the plots of the decay curves for each of the strings show that the 2nd 

harmonic generally dies out faster (has a shorter time constant) than the 1st harmonic.  
Although this may seem intuitive from Equ.(5b), where the initial amplitude of the 2nd 
harmonic is predicted to be 1/9 of the amplitude of the first harmonic, the fact is that Equ.(5) 
does not take into account how the amplitudes of the harmonics also depend on time.  Equ.(5), 
cannot therefore predict the rates of decay and the time constants must therefore be elicited 
here by experiment (see “Waves II” by Professor Steven Errede, Department of Physics, 
University of Illinois at Urbana-Champaign, IL, copyright 2000 for a more in-depth theoretical 
approach to quantitatively predicting how the magnitudes of the oscillations can be calculated 
as a function of time, i.e., how to predict the time constants for different dampening processes). 

 
Another interesting feature of this experiment can be seen in the relative magnitudes of 

the 1st and 2nd harmonic initially after the string was plucked.  Because the guitar strings were 
plucked in this experiment close to the bridge of the guitar, it makes sense that the initial 
amplitudes of the higher harmonics might be initially greater than the 1st harmonic (producing a 
brighter sound than if the string was plucked at the 12th fret and/or midpoint of the neck, in 
which case the 1st harmonic is excited the most and produces a characteristic mellow tone).  
Correspondingly, compared to the plots of the 1st harmonic, greater magnitudes of the 2nd 
harmonic can be seen in the decay curve plots of the open Low E, A, and B strings.   
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Along with the plots shown in Appendix A, the fact that the guitar strings were plucked 

at the bridge is also apparent by looking at the frequency spectrum plots shown in Appendix B.  
In these plots the first five harmonic frequencies appear as unmistakable spikes.  Along with 
showing that the harmonic frequencies are separated by regular frequency intervals because the 
resonate harmonic frequencies of the higher harmonics are integral multiples of the 1st 
harmonic, the heights of the spikes show the relative magnitudes of the oscillations for the 
different harmonics.  Although this is true mostly for the frequency spectrum plots taken soon 
after the plucking of the guitar, when all five harmonics are visually apparent, the frequency 
spectrum plots taken after a long period of time, e.g., after 6 or 8 seconds has elapsed, are also 
useful in showing some trends.  Some of these trends varied depending on the string being 
tested.  For example, the frequency spectrum plot for the Low E string in Appendix B1, shows 
how the magnitude of the 1st harmonic is generally preserved for a longer period of time during 
while the higher harmonics fade out after the first 4 seconds.  This is in contrast to the lengthy 
preservation of all five harmonics as seen in the plot of the open A string vibration in Appendix 
B2.  This in turn indicates that the preservation of the higher harmonics may be string 
dependent or subject to other conditions that coincidently vary dramatically by string.  Also, 
another trait apparent in several of the plots in Appendix B2 is the presence of a weak resonate 
frequency at 60 hertz caused by the ambient electric circuitry common in all AC-powered 
household and laboratory appliances, usually apparent during the last few seconds of 
measurements when the voltages caused by the vibrating string are no higher than the ambient 
60 hertz voltages.  To some degree, the presence of this “household” AC frequency at 60 hertz 
can help us gage the accuracy of our experimental apparatus.  Lastly, another trait seen by 
viewing the frequency spectrum plots in Appendix B is that the magnitudes of the different 
harmonics cannot be measured purely by the height of the spikes produced on the plot.  Rather, 
as indicated in Appendix B9 for the open D string, a more accurate method for measuring the 
relative strengths of the different harmonics would require integrating the voltages of the 
frequencies immediately surrounding the main resonate frequency seen for each harmonic.   

 
As far as the difference in time constants among the various strings of the guitar (Low 

E, A, D , G, B, and Hi E), a quick look at the table of time constants in Appendix C shows that 
the wound strings (Low E, A, and D) did generally have a higher Tau for the 1st harmonic than 
the plain strings.  This may be attributed in large part to the greater momentum imparted to the 
wound strings upon plucking them as compared to the plain strings, which have a significantly 
smaller mass (lower momentum after initial displacement) than the wound strings.  Although 
the larger, more massive strings probably induced greater dampening forces opposing their 
motion, these dampening forces were not proportionally large enough to balance the higher 
momentum given to the wound strings as compared to the plain strings.  Correspondingly, the 
string with the highest mass, Low E, had the highest overall time constant.  It is interesting to 
note, however, that the time constant for the 2nd harmonic was not significantly higher for the 
wound strings compared to the plain strings.   
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As mentioned in the beginning of this discussion, one of the main questions upon which 
this experiment was based was the question of determining which dampening processes were 
dominant over which specific time intervals of the string vibration.  In keeping with this aim, 
the goal of the last part of this experiment was to monitor any changes in the magnitude of the 
voltage signal caused by varying the height of the pickups relative to the vibrating strings, i.e., 
varying the guitar action.  Unfortunately, because the guitar pickup came off the first guitar 
while attempting to adjust its height, a second guitar had to be used that was different from the 
guitar for which all the beginning work (the voltages for the six open strings) had already been 
conducted.  As such, the voltage signal produced by vibrating the open D string for the second 
guitar was much weaker than for the first guitar, and the results were probably not as reliable.  
Despite these difficulties, the time constants calculated and presented in the table of Appendix 
C for the open D string vibrating over a pickup adjusted very close to the stings showed a 
slightly lower time constant for the 1st harmonic at time intervals of 0.8 to 3.2 seconds and 2.0 
to 6.0 seconds, and a more pronounced difference for the time constant measured during the 6.0 
to 8.8 second time interval.  Thus, although our prediction was borne out by experiment, 
namely, that the time constant should be lower for the pickup adjusted close to the guitar 
strings (more dissipative losses due to increased magnetic dampening), the overall differences 
in time constant values were on average not very substantial and may or may not be able to 
substantiate our hypothesis beyond an allowance given for experimental error.  Furthermore, 
the time interval over which this dampening process might have its most dominant influence on 
overall guitar string dampening could not be determined.  Compared to the time constants 
calculated for the 1st harmonic, the time constants calculated for the second harmonic show a 
more significant difference, especially during the 2 to 6 second time interval.  Again, however, 
the reliability of the data might be questionable.  A quick visual inspection comparing the plots 
of the decay curves for the 1st harmonic in Appendix A7 to the plot of the decay curve in 
Appendix A8 can also be made.  This shows that the decrease in voltage magnitude per unit 
time shown by the decay curve for the pickup farther away is noticeably more precipitous than 
for the pickup adjusted closer to the strings, thus actually contradicting our hypothesis.  One 
thing that might add at least a little more credence to the results, however, is that the initial 
voltage for the close pickup initially after the string was plucked was greater than for the farther 
pickup, which would be consistent with what we expect provided the strings were plucked with 
approximately the same initial displacement.  As a final observation, the fluctuations seen in 
the harmonics during a time of 8 and 10 seconds shown in Appendix B7 might be indicative of 
the humming phenomena sometimes noticed when using low guitar action. 
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After conducting this experiment, it was noticed that the code used to take the voltage 
measurements for each frequency starting at 2.5 hertz and going up to 3000 hertz in 2.5 hertz 
intervals was a bit unnecessary and wasteful of computer computations.  More precise 
measurements of the voltage, taken more continuously, could have been achieved if the allotted 
number of 64,000 samples (voltage measurements) taken by the computer program could have 
been designated for a shorter frequency spectrum.  An even better method would have 
employed the coding of a separate program for each vibrating string so that all the voltage 
measurements taken could be isolated only around the expected harmonic frequencies of the 
vibrating string.  Lastly, although it would have introduced added complications in diagnosing 
the pure harmonics of a guitar string, adding an amplifier in series with the ADC board going 
to the computer could have increased the amplitudes of the harmonics in such a way as to make 
the amplitudes of the higher harmonics still perceptible even over long decay times. 

 
Conclusion: 

This experiment set up a beginning apparatus and method for monitoring the decay rates of 
each vibrating open string of a guitar.  In general, the expectations that the higher harmonics 
would decay faster than the lower harmonics was confirmed by experiment.  Also, while there 
was only a slight differences in the time constants for the 2nd harmonic among the six strings, 
the 1st harmonic for the heavier wound strings (Low E, A, and D) showed higher time constants 
than for the lighter plain strings (G,B, and High E).  Lastly, the hypothesis that an open string 
vibrating closer to a guitar pickup would show a higher decay rate of its harmonics was not 
quantifiably confirmed in this experiment due to the questionable legitimacy of the data 
collected during this part of the experiment. 
 

Although the vibration of guitar strings is a non-ideal phenomena with much coupling 
between many mechanisms of dissipative losses (many varying time constants), the theory used 
in this experiment was based on ideal strings with only one mechanism of dissipative energy 
losses (assumed a non-varying time constant) and so it had its limitations, especially when 
attempting to quantitative evaluate the experimental results.  Despite this, different time 
constants were calculated in this experiment by iteratively measuring the voltage differences at 
different times during the string vibrations.  A more accurate approach for finding a specific 
time constant for each time interval could have been realized by measuring the “instantaneous” 
drop in voltage over an infinitesimally small (or as small as experimentally possible) time 
interval.  Also, computer codes tailored to each string being tested could be developed to take 
as many measurements as possible for a specific harmonic frequency, thus dramatically 
increasing the precision of finding the time constants and measuring the sustain of the guitar 
strings.  
 
 
 
 
 
 
 

 


