
 1

 
 
 
 
 
 

Effectsecution: 
a journey into DSP sound manipulation 

Physics 498pom Final Paper 
 

Farsheed Hamidi-Toosi 
Jason Noah Laska 

 
 
 
 
 
 
 
 
 
 
 
 



 2

Introduction 
 For our final project, we researched and implemented DSP effects algorithms in 
C.  Initially, we anticipated on implementing these algorithms on a real-time Texas 
Instrument C6000 series DSP processor, but due to time constraints and equipment 
problems, abandoned the idea.  Instead, we coded these algorithms in C and used a free, 
open source DSP audio API called PortAudio.  The advantage to using PortAudio was 
that it provided real-time audio input/output routines for a number of popular platforms, 
allowing the code we wrote to be very portable.  PortAudio will work on Mac, Windows 
and Unix machines.  And since the DSP coding is in C, it would be easy to port the code 
to the Texas Instruments DSP, which also compiles C.  Once we had decided on using 
PortAudio, it was time to decide what audio algorithms to implement. 
 We wanted to learn about commercial audio algorithms that are in use today, as 
well as experiment with our own audio DSP algorithms.  Since many audio effects are 
based on variations of a few simple concepts, we decided to try and implement the basic 
concepts and then use those as building blocks for more complex effects.  The basic 
effects can be categorized under time, frequency, or amplitude effects. 
 
Delay 
 The simplest audio effect algorithm is delay.  This effect consists of adding a 
delayed version of the input mixed with the current input itself.  The block diagram for a 
simple delay is shown below. 

 
fig. 1. simple delay 

 
The block called “delay” is often denoted as z - D , where D is the length of the delay in 
samples, because dsp transfer functions often are shown using z transforms, which is 
simply short hand notation for z-d = e jdwt ,  In either case, this delay is usually 
implemented using a circular memory buffer of length D.  The delay mix multiplier 
scales the delay output to provide control over the volume of the delayed input.  A 
variation on the simple delay is the feedback delay, which additionally takes the output 
from the delay and adds it back into the input of the delay. 
 

 
fig. 2. delay with feedback [2] 

 



 3

 For delay without feedback, the real world analogy would be standing rather far 
away from a wall and then yelling.  The sound wave would take a certain amount of time 
to travel and come back, which can be calculated from distance = rate x time, where rate 
is the speed of sound in air (~343 m/s at NTP).  The addition of this feedback component 
is a more accurate model if the echoes are able to bounce back and forth between two 
walls.  If we think about yelling into a large canyon, when we yell we hear a delayed 
version of our initial yell, but then we hear the secondary reflections as the sound waves 
bounce back and forth between the walls of the cave until they die out.  In real life, the 
feedback gain is always less than one because part of the energy is absorbed when it 
bounces off a wall.  However, on the computer we can set this gain to unity (infinite 
echoes that never die out) or greater than unity which will cause instability and will result 
in the gain of the overall output to go to infinity very quickly, which will cause distortion 
and/or clipping. 
 
Yet another variation on delay is the stereo ping-pong delay which has the following 
block diagram: 

 
fig. 3. Ping-Pong delay[2] 

 
This variation essentially takes the feedback component and feeds it into the input of the 
delay unit of the opposite channel.  The result is that each iteration of an echo flips from 
the right channel to the left channel. 
 
Implementation of the Delay Block 
 The delay block is implemented by saving samples into a circular buffer.  The 
circular buffer is a data structure similar to a fixed length queue.  Items are placed into 
the top of the buffer and read out through the bottom.  The first items to go into the buffer 
are the first items that come out, and we read and write at a one to one rate (ie: for 
everyone sample read from the buffer, we write a new sample to the buffer).  This can be 
seen intuitively seen in the example case of delay.  If we initialize a length D circular 
buffer by filling it with zeros, and then enqueue samples onto the buffer, D samples will 
be read followed by the delayed data.  The circular buffer concept is fundamental to 



 4

implementation of many of these effects as most of them require some form of delay 
block. 

D
(buffer 
size)

top

bottom  
                      fig. 4. Circular Buffer 

 
 
Amplitude Modulation (or Ring Modulation) 
 This effect modifies the frequency content of the input.  All it does is simply 
multiply the input by a cosine at a particular frequency in the time domain.  The result of 
such an operation modulates the input frequency, which creates sum (w1+w2) and 
difference (|w1-w2|) frequencies.  These sum and difference tones may not be harmonic, 
and thus the result of this effect can be very dissonant.  If we consider the input to be 
x(t)=cos(w1) and the modulating frequency to be c(t)=cos(w2) then our output would be 
y(t)=x(t) * c(t).  
 
 Mathematically this looks like: 
 y(t)=x(t) * c(t) 
      =cos(w1)*cos(w2) 
                 = ½ [cos(w1-w2) + cos(w1+w2)] 
 

)t(y

)t(c

)t(x

 
fig. 5. Amplitude modulation y(t)=c(t)*x(t) 

 
This effect is also called ring modulation, most likely because sounds that ring (i.e. bells, 
cymbals) have dissonant, chaotic, or non-harmonic spectrums.   
 



 5

Tremolo 
 An interesting thing happens though, when the amplitude modulation frequency 
of c(t) drops below ~10 Hz.  The sensation of hearing sum and difference tones magically 
disappears and instead we hear what is often referred to as tremolo.  This sounds like the 
original input sound pulsating in amplitude at the modulating frequency, but no extra 
tones are present.  The reason for this has to do with the auditory physiology of the 
human ear.  If the modulation is able to create sum and difference tones that fall outside 
of the critical bandwidth at that frequency, then a second tone appears.  However, if the 
modulation frequencies fall within one critical bandwidth, only the original tone is 
perceived.  Another way to think about it is that since the lowest frequency the human ear 
can detect is around 20 Hz, any amplitude variations less than 20 Hz will sound like 
amplitude fluctuations instead of another frequency.  Human hearing is most definitely 
non-linear. 
 
 
 
 All-Pass Filter 
 One of the most useful building blocks in digital audio effect design is the all-pass 
filter.  This filter has the characteristic of having a gain equal to unity but causes a phase 
shift at a particular frequency.  The reason for this can be seen by simply examining the 
transfer function for a first order all-pass filter: 

 
 
The unique property of the all-pass filter comes from the fact that all the poles cancel the 
zeros, exactly.  However, this filter modifies the phase of the input at particular 
frequencies.  By adding the input with the all-passed version of the input, those 
frequencies that are 180o out of phase will cancel and there will be a notch or frequency 
attenuation.  This can be utilized to make an equalizing algorithm or phasor effect.  The 
block diagram of an all-pass filter looks very similar to delay with feedback: 

 
fig. 6. 1st order All-Pass Filter [2] 

 



 6

The only difference between this diagram and the delay with feedback diagram are the g 
and –g multiplier terms.  The condition that the feedforward multiplier is the opposite of 
the feedback multiplier must be true in order for the resonant frequencies to cancel the 
zero frequencies.  You can imagine if you took away the feedback portion, the resulting 
filter (comb filter) would create zeros or notches in the spectrum at frequencies equal to 
1/delay [Hz].  If you took away the feedforward portion, you would have resonances 
equal to 1/delay [Hz]. 
 
Distortion 
 A very popular effect that is often desired is that of distortion.  Distortion is an 
effect that applies quadratic, cubic, or other higher order non-linearities to a signal, which 
results in an increased number of harmonics-per-input frequency.  Since these harmonics 
are integer multiples of the input frequency, the perceived output is fuzzy and “warm”.  
Distortion is often implemented in the digital world via a simple output/input amplitude 
transfer function.  With fancier digital distortion, you can actually draw the transfer 
function with lines and achieve some pretty bizarre (and usually bad/gritty sounding) 
distortion.  For our distortion, we implemented a simple cubic distortion routine.  A cubic 
distortion brings extra harmonics (notably the third harmonic) in addition to the original 
input frequency.  In general, digital distortion sounds much harsher and colder than 
analog distortion, most likely because the amplitude for a typical audio wave file has a bit 
depth of 16 bits, which limits one to 216=32768 different amplitude values.  Thus 
mapping a cubic distortion will involve some quantization error when compared to an 
analog (and therefore continuous) distortion equivalent.  When mapping original samples 
to a cubic function, the magnitude of the audio can easily grow to large scales causing 
clipping.  To reduce this clipping effect, the magnitudes are first scaled, then mapped 
with a cubic function, and then rescaled to that the sound follows a non-linear pattern. 
 
Harmonic Exciter/Resonator 
 Many of today’s audio DSP algorithms were developed in the 70’s and the 80’s 
and still remain in use today.  One such algorithm is the Karplus-Strong physical model 
of a string.  This model basically consists of a delay with feedback, scaled and attenuated 
by a low-pass filter.  

 
 
 

 
fig. 7. Karplus Strong Harmonic Resonator with averaging filter applied to feedback.[7] 

 
 



 7

 
fig. 8. A more intuitive diagram of the Karplus- Strong model. 

 
 Each component of this algorithm represents a physical aspect of wave 
propagation.  The delay buffer represents the time it takes for the wave to propagate 
down the length of the string, and the feedback represents the wave bouncing back up the 
string, while the two ½ multiplier terms and z-1 implement an averaging filter which 
represents the body of the instrument.  By loading the N samples delay buffer with 
harmonically rich content, such as white noise, a sharp resonance will occur centered 
upon the frequency determined by the length of the delay.  This frequency can be 
determined as f = 1/delay and can be thought of as a pole resonance at this frequency.  
One thing that we found out and had fun with was that by loading the delay buffer with 
different shapes, we could achieve various initial conditions similar to plucking a guitar.  
That is, if we loaded a symmetric triangle function into the buffer, it would be analogous 
to plucking a guitar string from the middle.  This resulted in a mellow-like resonance 
frequency tone.  If the triangle is made more asymmetric, by shifting the peak to the left 
side, we essentially created a significantly sharper slope on one side, which introduced 
higher harmonics.  This is similar to plucking a guitar string near the bridge, resulting in a 
brighter tone signal.  By accident, we also loaded the buffer with a sinc2 waveform, 
which actually made the waveform sound like an old 80’s synthesizer with a weird 
phasor/flanger effect. This simple algorithm is still one of the best sounding string 
synthesis algorithms available, in our opinion. 
 
Digital Waveguide Models 
 An expansion upon Karplus Strong’s model is to simply create a more exact 
replica of waves traveling on a string.  By creating two delay buffers, one for the P+ 
traveling wave and one for the P- traveling wave, creating reflection coefficients for the 
boundary conditions, and using more complex filters to represent the body of the 
instrument, a more “exact” physical model can be created.  What about string thickness, 
material-type, attenuation variables, environmental conditions and nonlinearities?  These 
physical models can become extremely complicated very quickly, but the tradeoff is 
computational cost.  In trying to model a spring reverb unit, we tried to use a digital 
waveguide but found it did not sound too similar to the real thing.  However, during our 
demonstration Professor Errede informed us that a real spring reverb unit has three 
springs, not just one.  Since we only modeled one spring, we had greatly simplified our 
model and thus were missing some important synthesis parameters. 
 



 8

P+ traveling wave

P- traveling wave

outLPF 

N samples Delay Buffer

N samples Delay Buffer

-1

-1

 
 

fig. 9. Spring Reverb Digital Waveguide Model 
 
Reverb 
 Reverb is the result of acoustic echoes bouncing and dissipating in a room.  
Inspired by our lackluster success of our spring reverb digital waveguide model, we felt 
inclined to implement a simple reverb filter model based on comb filters and all-pass 
filters.  A comb filter is simply a feedforward delay, which creates notches in the 
spectrum.  The way this reverb filter algorithm works is that it models the early 
reflections as delayed versions of the input, much like our simple delay algorithm, and 
then it models the dissipation of echoes using all-pass filters.  This transition from early 
reflections to white noise like dissipation “air” occurs after a period of time referred to as 
Schroeder’s time.  This is when the sound waves bouncing off the walls are occurring so 
frequently and there are so many reflections that it does not sound like echoing but rather 
like decaying band-pass filtered white noise.  The impulse response of a particular room 
might look like the following picture. 

 
fig. 10. Impulse response of a room. [2] 

 
You can see the early reflections are much more widely spaced out and discernable than 
the late reflections.  The algorithm we implemented was Schroeder’s reverberator 
algorithm. 
 



 9

 
fig. 11. Schroeder’s comb filter reverb.[2] 

 
The comb filters represent the input bouncing off the walls to form the early reflections, 
and uses the all-pass filters to model the late reflections.  The only major problem with 
this algorithm is that transient signals sound very unnatural, which is most likely due to 
the settling time of the IIR all-pass filters. 
 
 
 
Reverse 
 Reverse simply takes an audio signal, stores it in memory, and reads it out in the 
opposite order.  This means that if you said the word “hello”, it would end up sounding 
like “olleh” after a specified delay amount.  The longer you set the delay time, the longer 
the reverse effect will occur. 



 10

input

out
stack input/output 
switches when full

 fig. 12. Reverse Algorithm 
 
This effect uses two stacks in memory, and is very simple to implement.  You could 
probably do this with analog circuitry but it would not be easy.  The idea is that while the 
input fills one stack, the contents of the other stack is emptied.  Once the stack is full, the 
input starts filling the other stack, and the recently filled stack empties. 
 
 
Phasor 
 With a simple variation of the delay effect, we can achieve a phasor effect.  A 
simple phasor consists of making the delay time of a simple delay unit to be less than 50 
ms and varying this delay length either linearly or sinusoidally.  Since the lowest 
frequency that is audible to the human ear is 20 Hz, then any delay that is less than that 
period (~50 ms) will not be heard as an echo, but rather a phase shift.  The output then is 
the phase-shifted version of the input is added to the original input.  If the phase shift 
happens to be 180o of the input, the output will go to zero.  However if the phase shift 
happens to be 360o then the output for that frequency will be amplified by two.  The 
result is that certain frequencies are boosted and attenuated for various phase shifts.  If we 
vary this phase shift over time, it is equivalent to “sweeping” over all frequencies.  
Another way to look at a phasor is that it is simply creating a notch filter at a particular 
frequency, and then sweeping the filter over a specified range.  A simple delay unit with 
no feedback is equivalent to a digital filter with a zero occurring at a frequency of 1/delay 
length.  Varying this delay length varies the location of this zero point.  We also 
experimented with trying to sweep a 2nd order IIR bandpass filter to see if it sounded like 
phasor, and it sounded pretty close, but the simple 1st order allpass configuration sounded 
best. 



 11

Delay (varies 
with time)

delay time control 
(sin,triangle,square,etc.)

g

outin

-g

 
 

fig. 13. Phasor using 1st order All-Pass filter. 
 
Parametric EQ 
 This algorithm is based on a paper by Mitra-Regalia.  It implements a very nice 
bandpass/bandstop filter with independent control over the bandwidth, center frequency, 
and boost/attenuation.  It uses a second-order all-pass filter to create a 180o phase shift at 
a given frequency, and when this is mixed with the input, it causes an attenuation at that 
frequency.  In addition, this filter uses a lattice implementation of the all-pass filter 
instead of Direct form II because using Direct Form II creates instability due to the 
feedback factor.  Essentially a lattice structure is a single order all-pass filter nested 
inside of another single order all-pass filter.  Lower order digital IIR filters are in general 
more stable than higher order digital filters, and thus it is advantageous to cascade lower 
order filters whenever possible. 

 
fig. 14. Mitra Regalia Topology.  

 
fig. 15. A(z) = 2nd order all-pass lattice. 



 12

 
Design Equations for this filter: 
 
            β = – cos(ωc)               this sets the center frequency of the filter in radians 
 

   k = 10(GAIN/20 dB)                     this determines the GAIN of the filter (can boost or cut) 
 
 α =  (1 – tan (BW[rad]/2)        this coefficient sets the 3dB bandwidth of the filter  

        (1 + tan (BW[rad]/2) 
 
 
Some example plots detailing how the filter changes when the parameters change: 

 
fig. 16. Changing alpha changes the 3dB bandwidth of the filter.[8] 



 13

 
fig. 17. Changing K boosts or cuts by a certain amount.[8] 

 
 

 

 
fig. 18. Changing beta changes the center frequency of the filter.[8] 

 
 
 
 
 
 
 
 



 14

Conclusion 
 We had a lot of fun researching and implementing these algorithms, especially 
since we grew up playing with programs on our computer that implemented these 
algorithms.  Because we researched and experimented with these algorithms ourselves 
our understanding of audio DSP is much stronger than before. 
 
Thanks 
 Thanks to Professor Errede for the overwhelming amount of knowledge he shared 
with us all throughout the semester, and the MusicDsp.com list, whose members created 
the outstanding PortAudio package. 
 
 
Resources: 
 
[1]  Montana University Web Site.   
 http://www.coe.montana.edu/ee/rmaher/ECEN4002/lab4_020226.pdf 
 
[2] Harmony Central Web Site. 
 http://www.HarmonyCentral.com/Effects/ 
 
[3]  Errede, Steven.  Phys 498pom Notes, Spring 2005.  
 
[4]  Haken,Lippold. ECE 402 Notes, Fall 2004. 
 
[5] Hasegawa-Johnson, Mark. ECE 403 Notes, Spring 2005. 
 
[6] PortAudio, Cross-Platform Audio API. 
 http://www.portaudio.com 
 
[7]  CCRMA, Stanford University. 
 http://ccrma.stanford.edu/~jos/SimpleStrings/Karplus_Strong_Algorithm.html 
 
[8]  Colorado State University. 
 http://ece-www.colorado.edu/~ecen4002/lab4_2004.pdf 


