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This project utilizes the chaotic leaky faucet apparatus to generate computer music. Studies
have shown that the power spectrum density of human music obeys 1/ f β power law. For the
leaky faucet, the time difference between successive drops will exhibit chaotic behavior under
specific flow rates, which also obeys 1/ f β power law. The drop signal is imported into a
computer which converts it into the pitch and beat of music notes. The sequence of notes is
then modified to produce harmony, chord progression and repetition. Listenable music can be
created through the process.

Introduction
Human music contains patterns. For instance, harmony is

formed by notes whose frequencies have simple integer mul-
tiple relation. Other mathematical relations have been used
to understand and model music, such as neural topography
(Janata et al. 2002) and orbifold space (Tymoczko 2006). In
particular, the 1/ f power law has been found useful to char-
acterize different genres of music (Voss 1978, Hennig et al.
2011, Levitin et al. 2012).

For a time-domain signal V(t), the frequency-domain
power spectral density S V (ω) is related to the time-domain
auto-correlation function h(t) by

S V (ω) =

∫ +∞

−∞

h(t)e−iωtdt (1)

where

h(t) =

∫ +∞

−∞

V(τ)∗V(t + τ)dτ (2)

S V (ω) is an indication of the correlation of V(t), which can
be obtained from its Fourier Transform. The 1/ f power law
describes a signal whose power spectral density S V (ω), or
S V ( f ), differ simply by a factor of 2π, obeys the relation

S V ( f ) ∝ 1/ f β (3)

For white noise, where V(t) has no temporal correlations,
β = 0; for Brownian noise β = 2, which means that V(t)
is strongly correlated.

Voss (1978), Hennig et al. (2011), and Levitin et al. (2012)
have shown that in many musical pieces, from classical to
rock music, the fluctuation of pitch (frequency), loudness and
duration obeys 1/ f power law. The exponent β ranges from
0.4 to 1.4, depending on the composer and genre. The range
of β suggests that human music keeps a balance between pre-
dictability (β = 2) and randomness (β = 0).

The 1/ f relation is also observed in several natural phe-
nomena, such as the frequency of earthquakes and the fluc-
tuation of heart beat rate. The chaotic leaky faucet, used in a
past UIUC Advanced Physics Lab course, may exhibit chaos

in the time difference between successive drops produced be-
cause of the standing wave and damping in water (Martien et
al. 1985). The time difference follows the 1/ f power law,
and is used as the 1/ f noise source in this project.

Chaotic faucet setup

Figure 1 shows the chaotic leaky faucet setup. Two water
jugs are used to control the flow rate of water. The upper
water jug, connected by a siphon to the lower jug, serves as a
water reservoir. The end of siphon in the lower jug is attached
to a float valve (shown in pink) to keep the water level fixed.
Since the drop behavior is highly sensitive to the viscosity,
which is related to the temperature of water, the lower jug is
covered by a black insulation. The water coming from the
reservoir is much fewer than the water inside the lower jug,
so the water temperature stays approximately the same.

The bottom of the lower jug is connected to a glass tube,
on which a needle valve controlling the flow rate is mounted.
The end of the tube (bottom left in Fig. 1) is a nozzle where
drops are formed. The nozzle is shielded by plastic funnels
to avoid wind perturbation, and a laser beam is set up under
the nozzle. When a water drop cuts through the laser beam,
the photo-detector at the other end of the beam would receive
less intensity and the change is outputted as voltage signal.

The output of the photo-detector is processed by a circuit
designed by Professor Steven Errede, and the data is sent to
a personal computer with CVI analysis program. To observe
the data in real time, the time difference between successive
drops is converted to voltage signal and outputted from the
DAC1 port of the circuit board. The signal is transmitted to
an oscilloscope for visualization (Fig. 2). In addition, the
signal is transmitted to a Wavetek function generator and a
audio power amplifier, which converts time difference into
different frequencies of sound, played by a loud speaker.

Procedure

To start the siphon effect, air is pumped into the sealed
upper water reservoir. As the upper reservoir stays over-
pressured, the water will continuously flow through the
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Figure 1. The chaotic faucet setup (top) and the schematic sketch
(bottom), adapted from Fregeau (1998).

siphon to the lower jug, which is open to atmospheric pres-
sure. It is critical that the upper reservoir be kept over-
pressured until the valve in the lower jug is immersed in wa-
ter; otherwise air will come into the siphon from the valve.
Once the valve is immersed in water and then closed, the up-
per reservoir will be open to atmospheric pressure. Now the
siphon is filled with water and both jugs are at atmospheric
pressure.

The needle valve on the glass tube can then be opened to
create drops. As water flows out from the lower jug, the wa-
ter level slightly decreases and the float valve will open to let
water come in from the upper reservoir. By the design of the
float valve, the end of siphon at the lower jug will remain un-
der water throughout the experiment so that the siphon will
continuously take effect. Since the water level is approxi-
mately constant, the flow rate will be the same throughout
the period of measurement.

After drops are formed, the data acquisition system (laser

Figure 2. Connection of the data acquisition system.

Figure 3. Typical time difference between successive drops when
chaotic behavior occurs.

beam, audio power amplifier and the CVI program etc.) is
turned on. The output frequency of the Wavetek function
generator is adjusted such that the time difference signal is
transformed into audible sound. The water flow rate is con-
trolled by the needle valve. If the drops are formed peri-
odically, the sound produced by the loud speaker will have
the same pitch. If the flow rate is adjusted such that chaotic
behavior occurs, the pitch will vary in a way similar to jazz
music. An example is shown in “drop.mid,” which consists
of notes generated according to the drop time difference. The
audio effect makes it easy to find the specific flow rates which
result in chaos.

Once the chaotic behavior occurs, the needle valve is fixed
for at least 5 minutes, producing more than 1,000 time dif-
ference data. At the same time, the flow rate is measured by
weighting the drops produced in 5 minutes.

Data analysis

Figure 3 is a typical result of the time difference between
successive drops versus drop number. The flow rate in this
case is 0.400 g/s. The unpredictable variation indicates a
chaotic behavior. Despite the variation, the average time dif-
ference remains approximately constant, suggesting that the
flow rate is indeed constant. Fig. 4 shows the histogram of
the time difference. The average is 0.150 (s) and the standard
deviation is 0.002 (s).

To see the correlation between current and the next time
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Figure 4. Histogram of the time difference data in Fig. 3.

Figure 5. Scatter plot of the time difference data in Fig. 3.

difference, the scatter plot is shown in Fig. 5. The horizontal
axis represents the time difference between the n−1thand the
nth drops, and the vertical axis the nthand the n + 1th drops.
The points are not concentrated on line x = y, suggesting that
the drops are not formed periodically.

The chaotic time difference data is transformed into fre-
quency domain via Fast Fourier Transform algorithm to com-
pute the power spectral density, shown in Fig. 6. Both x and
y axes are in logarithmic scale. A linear relation is observed.
The least square fit (red line) indicates that the slope (β) is
1.59, with r2 = 0.55. Typically, β for chaotic drop time
difference ranges from 1.2 to 1.8. The data is my primary
1/ f βsource.

Converting to music

Figure 7 is a snippet of MATLAB code which reads the
raw drop data. Line 4 eliminates extreme data; namely,
points differ from the average by two standard deviations or
more. Line 7 randomly selects a segment and returns a se-
quence of numbers of desired length (n). There are infinite
number of ways to convert the drop signal to music. By trial

Figure 6. Power spectral density of the time difference data in Fig.
3.

1 f u n c t i o n y = drop ( n , da taname )
2 t x t = i m p o r t d a t a ( dataname , ’ � ’ , 1 4 ) ;
3 t i m e d i f f = t x t . d a t a ( : , 2 ) ;
4 t i m e d i f f = t i m e d i f f ( f i n d ( abs ( t i m e d i f f −mean (

t i m e d i f f ) ) < 2∗ s t d ( t i m e d i f f ) ) ) ;
5 L = l e n g t h ( t i m e d i f f ) ;
6 i n i = round ( random ( ’ u n i f ’ , 1 , L−n ) ) ;
7 y = t i m e d i f f ( i n i : i n i +n−1) ’ ;

Figure 7. A snippet of MATLAB code which reads raw drop data.

and error, the most effective procedure I have found is pre-
sented below.

Brownian noise perturbation

A major drawback of the music generated directly from
drop data (e.g. drop.mid) is that there is no trend or structure,
despite a certain degree of correlation. To solve this problem,
the drop data is perturbed by a Brownian noise. The Brown-
ian noise is produced by a random walk simulation, and the
displacement at each step follows a normal distribution (Fig.
9). For instance, Fig. 8 (top) shows the original drop time
difference, and Fig. 8 (middle) shows the Brownian noise.
The amplitudes of the two sequences have the same order of
magnitude.

The Brownian noise is added to the time difference to get
Fig. 8 (bottom). A clear trend can be seen; for example, a
climax appears around the 30th drop. The sequence is par-
titioned evenly into 36 regions and mapped to 36 integers
for further processing. In general, the number of regions can
range from 12 to 48, depending on the personal preference.

Repetition

Most music compositions have motives, which are recur-
rent sequences of notes. Fig. 10 shows the code that models
this effect. Lines 1 and 2 randomly selects a segment of 8
notes as the motif. Then a replacement of notes is made to
repeat the motif. For example, if the first note of a 4-note
motif is C, then every time C occurs in the entire sequence,
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Figure 8. An example of drop time difference (top), the Brownian
noise used for perturbation (middle), and the sum of two sequences
partitioned into 36 regions (bottom).

1 f u n c t i o n y = brown ( n )
2 y = z e r o s ( 1 , n ) ;
3 f o r i i = 2 : n
4 y ( i i ) = y ( i i −1) + random ( ’ norm ’ , 0 , 1 ) ;
5 end

Figure 9. A snippet of MATLAB code which generates a Brown-
ian noise.

1 s = round ( random ( ’ u n i f ’ , round ( n / 4 ) , round ( n
/ 2 ) ) ) ;

2 m o t i f = n o t e s ( s : s +7) ;
3 i d x = f i n d s t r ( n o t e s , [ m o t i f ( 1 ) ] ) ;
4 f o r i i = 1 : l e n g t h ( i d x )
5 n o t e s = [ n o t e s ( 1 : i d x ( i i ) ) m o t i f ( 2 : end )

n o t e s ( i d x ( i i )+ l e n g t h ( m o t i f ) : end ) ] ;
6 end

Figure 10. A snippet of MATLAB code which adds repetition to
the sequence.

Figure 11. Sequence of notes produced by drop data. The hori-
zontal axis is time and the vertical axis is the number of key on the
piano.

the note and the following 3 notes will be replaced by the
motif. The length of the entire sequence stays the same after
the process.

There will be quite a few repetition after this step. How-
ever, some of the motives will be changed by the following
processes and others will remain unchanged, which leads to
a combination of predictability and randomness.

Chord progression

Chord progression can be found in many music compo-
sitions. In this step, the processed drop data is mapped into
musical notes (Fig. 11). The notes are then adjusted to fol-
low the chord progression (Fig. 12), so that the music sounds
more structured. The following two chord progressions turn
out to be effective in my music generator: I-IV-V-I and I-V-
vi-iii-IV-I-ii-V.

To illustrate how the algorithm works, an example of I-IV-
V-I in C major is shown in Fig. 13. The first bar is in I chord,
which means that every note in this bar will be changed to
either C, E, or G, whichever closest to the original pitch. The
notes in the next bar will be changed to either F, A, or C, etc.
To account for the freedom in music, each note will have a
30% chance to remain unchanged. Again, the percentage can
be adjusted according personal preference.



LISTEN TO THE CHAOTIC FAUCET 5

1 f u n c t i o n [ y2 , p r o g r e s s i o n ] = t o c h o r d ( y ,
n o t e s p e r b a r )

2 t r i a d = [0 4 7 ] ;
3 t r i a d = [ t r i a d −12 t r i a d t r i a d +12 t r i a d +24

t r i a d +36 ] ;
4 p r o g r e s s i o n = [1 4 5 1] −1; % I IV V I
5 pp = 0 ; nn = 0 ;
6 y2 = y ;
7 whi le nn < l e n g t h ( y ) − n o t e s p e r b a r
8 f o r nn = nn + [ 1 : n o t e s p e r b a r ]
9 n o t e s = p r o g r e s s i o n ( pp +1) + t r i a d ;

10 i f rand ( 1 ) > 0 . 3
11 y2 ( nn ) = n o t e s ( d s e a r c h n ( n o t e s ’ , y

( nn ) ) ) ;
12 e l s e
13 y2 ( nn ) = y ( nn ) ;
14 end
15 end
16 pp = mod ( pp + 1 , l e n g t h ( p r o g r e s s i o n ) ) ;
17 end

Figure 12. A snippet of code which adjusts notes to follow chord
progression.

Figure 13. Illustration of chord progression adjustment.

Rhythm variation

So far, adjustments are made only on the frequency
(melody). The rhythm is also changed in this step simply
by removing notes according to the 1/ f noise of drop time
difference data. However, it is harder to control the rhythm
fluctuation. The rhythm determined merely by the 1/ f noise
sounds awkward; therefore, only a little rhythm variation is
added.

Harmony

To make the music sound “thicker,” harmonies are formed
for some notes by playing an octave-lower key at the same
time. At the beginning of each bar, the root of the chord
progression is also played at the same time. The loudness of
the harmonics is adjusted such that there will not be a sudden
increase in loudness when multiple keys are played at a time.

Finally, the sequence of notes is converted to a midi file
with piano timbre, using the MATLAB script developed by
Schutte (2012). A typical power spectral density of the pro-
cessed sequence is shown in Fig. 6. The computer generated
music is indeed a 1/ f β noise with β ranges from 0.8 to 1.5.

Figure 14. Power spectral density of a processed note sequence.
The red line is the least square fit with slope 1.1 and r2 = 0.50.

Discussion

Examples of my computer generated music are “pi-
ano1.mid,” “piano2.mid” and “piano3.mid.” A new music
piece can be generated simply by pressing a key to run the
code. Because of the random processes, the music gener-
ated each time is unique. Some parameters can be changed
manually, such as the length of music or the probability that
a note will be adjusted. The processed music is hopefully
more enjoyable than the music generated directly from the
raw drop time difference data. The fact that it is possible to
create listenable music with a computer suggests that there
are patterns in music people enjoy.

Creativity is a key element in music. After the program
is written, it requires little creativity to produce music, even
with more sophisticated algorithm. Computer generated mu-
sic may provide motivations for composers, but they can
never replace the role of human composed music.
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