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1. Introduction 
 

Human started enjoying music from the pre-historic period.  The consonances and 

dissonances, derived by small integer-related frequencies (consonances) or large integer-related 

frequencies (dissonances) were enjoyed by human for a long time and human gave their own 

order by “tuning” an instrument to systematically organize the sounds, which engendered the 

idea of “scale”.  The earliest instrument, the bone flute invented by human about 35,000 years 

ago can play 7 notes scale1, and this suggests that the history of tuning system and musical scale 

also started from the pre-historic era.  As human civilization developed, the musical 

environment including instruments, musical scales, and tuning system also evolved.  The tuning 

system and musical scales of Greek age also were significantly different from today’s equal 

temperament based tuning system and scales.  For example, the Greek music what Aristoxenus 

suggests is entirely based on three fundamental musical units, including quarter-tones: less than a 

half-step in the equal-tempered musical system. (See FIGURE 1)  Depending on the main 

musical context in a specific time-period, the musical tuning system was accustomed to the 

demands of musical milieu, and changed along with the evolution of music.  The Equal-

temperament tuning system widely used in modern music is the particularly customized tuning-

system for the harmonic language established in the Baroque period.  The harmony and 

counterpoint of 17th century was largely based on the concept of consonance and dissonance, in 

which the consonance includes octave (1:2), perfect 5th (2:3), perfect 4th (3:4), major 3rd (4:5), 

and minor 3rd (5:6), and the dissonance includes the rest of intervals.  Although the equal-

                                          
1 Steven Errede, Lecture note 8, p 10 

http://courses.physics.illinois.edu/phys406/sp2014/Lecture_Notes/P406POM_Lecture_Notes/P406POM_L

ect8.pdf, accessed [20140507, 00:37] 



temperament tuning system took a quintessential role in the development of western classical 

music, now musicians are trying to enlarge the concept of consonance and dissonance, or even 

develop the theory of traditional harmonic language so to open up the possibilities of variegated 

expressions not yet discovered.  

 

FIGURE1 - the scale units of Greek music2 

 

For example, by using Just tuning system, one can listen the lost pure-ratio-related frequencies 

(4:5:6), which only can be expressed as 4:5.04:5.99 (A=440: C#=554.37: E=659.26) in the equal 

temperament system. 

                                          
2 Henry Steward Macran, The Harmonics of Aristoxenus, Oxford at the Clarendon Press, p8 



2. Consonance and Triads 

 The level of consonance and dissonance is not only related with the fundamental pitches 

vibrating simultaneously, but also with their overtone relations.  The more of fundamental 

pitches are in smaller integer-related frequencies, the more of their overtones will be in the 

smaller integer-related harmonies.  For example, the overtones of a fundamental and the 

overtones of an octave higher pitch should be all in the small integer-ratio related harmonies:  

Fundamental Overtone series in small integer relations 
f f 2f 3f 4f 5f 6f 7f 8f … 
2f 2f 4f 6f 8f 10f 12f 14f 16f … 
FIGURE 2 - integer relations between a fundamental and it’s an octave higher frequency 

 

Even if two frequencies are not in a pure integer relation, human ear can regard those two 

frequencies as in consonance if their ratio deviations are less than a certain amount.  This 

amount is named as just-noticeable difference, and a people psychophysically acknowledge the 

two pitches as the same if they differ by less than the just-noticeable difference.3 (See FIGURE 

3)  If the difference from two different frequencies is less than the just-noticeable difference, 

human ear regards those two frequencies as same, or recognizes the difference as beating 

phenomena.  In the latter case, one can hear just a single frequency slowly changing its 

amplitude, without noticing any frequency difference.  

                                          
3 Thomas D. Rossing, F. Richard Moore, Paul A. Wheeler, The Science of Sound 3rd Edition, Pearson 

Education, Inc., Addison Wesley, San Francisco, 2002, p. 123 



 
FIGURE 3 - Just-noticeable frequency difference4 
 

For applying the just-noticeable frequency difference on the actual experiment, since it is 

impossible to apply the continuously changing Δf values on each harmonic series, the entire 

frequency range of the given graph is divided in five domains and the mean values Δf from each 

domain are applied for the frequencies in the range (FIGURE 4): 

 

range Δf 

0-500Hz 3Hz 

500-1000Hz 5Hz 

1000-2000Hz 9Hz 

2000-5000Hz 15Hz 

5000Hz and up 30Hz 

FIGURE 4 - quantized just noticeable frequency differences: Δf 

 

                                          
4 Zwicker, E., G. Flottorp, and S. S. Stevens, Critical Bandwidth in Loudness Summation, J. Acoust. Soc. 

Am. 29: 548. 



The consonance analysis of major and minor triad in Equal-temperament tuning system and just 

tuning system shows significant differences in their overtone relations when the just noticeable 

frequency difference Δf is applied: 

Equal-tempered Just-tuning 

freq (5.04/4) (5.99/4)  freq (5/4) (3/2) 

110 138.59 164.81 110 137.5 165

220 277.18 329.62 220 275 330

330 415.77 494.43 330 412.5 495

440 554.36 659.24 440 550 660

550 692.95 824.05 550 687.5 825

660 831.54 988.86 660 825 990

770 970.13 1153.67 770 962.5 1155

880 1108.72 1318.48 880 1100 1320

990 1247.31 1483.29 990 1237.5 1485

1100 1385.9 1648.1 1100 1375 1650

1210 1524.49 1812.91 1210 1512.5 1815

1320 1663.08 1977.72 1320 1650 1980

1430 1801.67 2142.53 1430 1787.5 2145

1540 1940.26 2307.34 1540 1925 2310

1650 2078.85 2472.15 1650 2062.5 2475

1760 2217.44 2636.96 1760 2200 2640

1870 2356.03 2801.77 1870 2337.5 2805

1980 2494.62 2966.58 1980 2475 2970

2090 2633.21 3131.39 2090 2612.5 3135

2200 2771.8 3296.2 2200 2750 3300

2310 2910.39 3461.01 2310 2887.5 3465

2420 3048.98 3625.82 2420 3025 3630

2530 3187.57 3790.63 2530 3162.5 3795

2640 3326.16 3955.44 2640 3300 3960

2750 3464.75 4120.25 2750 3437.5 4125



2860 3603.34 4285.06 2860 3575 4290

2970 3741.93 4449.87 2970 3712.5 4455

3080 3880.52 4614.68 3080 3850 4620

3190 4019.11 4779.49 3190 3987.5 4785

3300 4157.7 4944.3 3300 4125 4950

3410 4296.29 5109.11 3410 4262.5 5115

3520 4434.88 5273.92 3520 4400 5280

FIGURE 5 - Major Triad - 4: 5.04: 5.99 in EQ temp and 4: 5: 6 in Just tuning 

Equal-tempered Just-tuning 

freq (11.89/10) (14.98/10) freq (6/5) (3/2) 

110 130.81 164.81 110 132 165

220 261.62 329.62 220 264 330

330 392.43 494.43 330 396 495

440 523.24 659.24 440 528 660

550 654.05 824.05 550 660 825

660 784.86 988.86 660 792 990

770 915.67 1153.67 770 924 1155

880 1046.48 1318.48 880 1056 1320

990 1177.29 1483.29 990 1188 1485

1100 1308.1 1648.1 1100 1320 1650

1210 1438.91 1812.91 1210 1452 1815

1320 1569.72 1977.72 1320 1584 1980

1430 1700.53 2142.53 1430 1716 2145

1540 1831.34 2307.34 1540 1848 2310

1650 1962.15 2472.15 1650 1980 2475

1760 2092.96 2636.96 1760 2112 2640

1870 2223.77 2801.77 1870 2244 2805

1980 2354.58 2966.58 1980 2376 2970

2090 2485.39 3131.39 2090 2508 3135

2200 2616.2 3296.2 2200 2640 3300

2310 2747.01 3461.01 2310 2772 3465

2420 2877.82 3625.82 2420 2904 3630



2530 3008.63 3790.63 2530 3036 3795

2640 3139.44 3955.44 2640 3168 3960

2750 3270.25 4120.25 2750 3300 4125

2860 3401.06 4285.06 2860 3432 4290

2970 3531.87 4449.87 2970 3564 4455

3080 3662.68 4614.68 3080 3696 4620

3190 3793.49 4779.49 3190 3828 4785

3300 3924.3 4944.3 3300 3960 4950

3410 4055.11 5109.11 3410 4092 5115

3520 4185.92 5273.92 3520 4224 5280

FIGURE 6 - Minor Triad - 10: 11.89: 14.98 in EQ temp and 10: 12: 15 in Just tuning 

 

Here the yellow background frequencies have slightly larger Δf (mostly less than Δf * 2) than the 

noticeable differences in the specific range, and the red-lettered frequencies exist only in the 

equal tempered tuning.  Although the Just tuned major and minor triads have significantly 

clearer frequency ratio relationships than the Equal tempered major and minor triads, many 

newly arisen integer related harmonies (yellow boxes and red-colored numbers) exist in Equal 

tempered tuning system in which the deviation is slightly larger than Δf and less than Δf * 2.  In 

these frequencies, human ear can react differently on each frequency relation depending on the 

personal sensitivities and the level of musical trainings, but can be regarded as more consonant 

than the just tuning harmonies because of their numbers exceed those of just tuning sysem.  

This can be confirmed as more “stable” or “functional” harmony in human ear, when compared 

with the “pure” or “clear” qualities of just tuned harmonies, especially in major and minor triads, 

and pentatonic scale.  However the graph does not show the actual amount of beatings which 

will be generated because of the Δf in Equal tempered system.  The amount of beating also can 

be a quintessential factor for feeling a sound as consonant or dissonant, and this will be shown in 



the later experiment. 

 

3. Just Tuning and Overtone Tuning, and Cents Deviations 

Cents deviations between Equal temperament and Just tuning can be calculated by the following 

formula: 

 1 cent = 2  = 1.000577 

       EQ (Equal Tempered Freq) × 1.000577  = JST (Just Freq) 

 1.000577  = 
JST

EQ
 

 X log 1.000577 log JST

EQ
 

 X JST   EQ

.
 

FIGURE 7 - cents deviation formula 

 

For the Just tuning ratios, I used following ratios: 

Octave Perfect 5th Perfect 4th Major 3rd Minor 3rd 

2/1 3/2 4/3 5/4 6/5 

 

Major 2nd Major 6th Minor 7th Augmented 4th Minor 2nd 

9/8 5/3 16/9 45/32  16/15 

FIGURE 8 - Just tuning ratios 

 

Here the Augmented 4th is generated from the perfect 4th (4/3) and the major 7th (15/8), and the 

major 7th (15/8) is generated from the major 3rd (5/4) and perfect 5th (3/2).  Although this is not 

exactly same as the tuning system what Just-intonation related composers like Ben Johnston or 

Harry Partch used in their music, I wanted to limit the experiment within the clearest and 



smallest integer related ratios.  For example, the other major 2nd ratio 10/9 to be used for 

making a just major 3rd is omitted here: 

 9
8  just major 2nd    10 9  just major 2nd 2     5 4 just major 3rd   

Besides the Just tuning ratios, I also wanted to experiment the ratios based on the overtone 

tuning system.  The overtone ratio-based tuning is intensively used by many modern classical 

music composers, including the Spectral school composers-Gérard Grisey and Tristan Murail, 

German composer Georg Friedrich Haas, and American composer Ben Johnston who also 

employed the overtone based ratios into his Extended Just Intonation System, in which he used 

ratios including 7/4, 12/7, 11/9, 16/11, and 18/115.  Haas also frequently used the overtone 

based tuning system in his music, for example in his piece In Vain he used various large number 

of higher partials of different fundamentals: 

 

FIGURE 9 Hass, In Vain, m. 5156 

In FIGURE 9, Hass indicated the actual overtone number on top of each note which should be 

tuned in the precise overtone based microtonal tuning.  The fundamental is indicated in the 

                                          
5 Ben Johnston, edited by Bob Gilmore, Maximum Clarity, University of Illinois Press, Urbana and 

Chicago, p83-84 
6 Georg Friedrich Haas, In Vain, Universal Edition, Vienna, 2000, p163 / m.515 



parenthesis here. 

For this tuning experiment I chose the ratios based on 7, 11, 13, and 17 which are rarely used for 

both in Equal temperament and Just tuning system, and have a distinctive quality.  If these 

prime number overtone ratio based pitches are tuned in 24 equal tone tuning system, these 

pitches should be tuned a 1/4 tone lower than the other pitches: 

Octave Perfect 5th Perfect 4th Major 3rd Minor 3rd 

2/1 3/2 4/3 5/4 6/5 

 

Major 2nd Major 6th Minor 7th Augmented 4th Minor 2nd 

9/8 13/8 14/8 11/8 17/16 

FIGURE 10  Overtone based tuning ratios  

 

 
FIGURE 11  microtonal deviations in C overtone series (See the prime number overtones)7 
 

For example, the 7th, 11th, and 13th harmonics’ cents deviations are larger than 25 cents (See 

Figure 11), and are close to the quarter-tone tune downed pitches than the equal tempered pitches. 

 

For selecting chords, eight crucial chords are selected from the classical musical context, modern 

                                          
7 Robert Hasegawa, Eastman School of Music, Gegenstrebige Harmonik in the Music of Hans Zender, 

MTSNYS Annual Meeting, April 9, 2011 



classical music, and non occidental music, based on the fundamental A2.  The register is 

decided to attain maximum numbers of overtone series: 

 

FIGURE 12 - eight fundamental chords from music history 

These are major triad, minor triad, diminished triad, dominant seventh chord, diminished seventh 

chord, half-diminished seventh chord, Petrushka chord (what Stravinsky used in his piece 

Petrushka written in 1910-11), and pentatonic chord.  The Petrushka chord is chosen both 

because it took a significant role of music historical context and also is based on order closed to 

the overtone series: 4:5:6:7:11:17.   

 

 

4. Tuning Implementaion 

Major triad A C-sharp E       EQ 

frequencies 110 138.59 164.81

cents deviation 0 0 0

(1) (5/4) (3/2) JS 

frequencies 110 137.5 165

cents deviation 0 -13.6886 1.997419

Minor triad A C E       EQ 

frequencies 110 130.81 164.81

cents deviation 0 0 0

(1) (6/5) (3/2) JS 

frequencies 110 132 165

cents deviation 0 15.69956 1.997419



Dimished triad A C E-flat       EQ 

frequencies 110 130.81 155.56

cents deviation 0 0 0

(1) (6/5) (45/32) JS 

frequencies 110 130.81 154.69

cents deviation 0 15.69956 -9.72273

(1) (6/5) (11/8) OV 

frequencies 110 130.81 151.25

cents deviation 0 15.69956 -48.7097

Dominant seventh A C-sharp E G     EQ 

frequencies 110 138.59 164.81 196

cents deviation 0 0 0 0

(1) (5/4) (3/2) (16/9) JS 

frequencies 110 137.5 165 195.56

cents deviation 0 -13.6886 1.997419 -3.89613

(1) (5/4) (3/2) (14/8) OV 

frequencies 110 137.5 165 192.5

cents deviation 0 -13.6886 1.997419 -31.2369

Dimished seventh A C E-flat G-flat  EQ 

frequencies 110 130.81 155.56 185

cents deviation 0 0 0 0

(1) (6/5) (45/32) (5/3) JS 

frequencies 110 130.81 154.69 183.33

cents deviation 0 15.69956 -9.72273 -15.7203

(1) (6/5) (11/8) (5/3) OV 

frequencies 110 130.81 151.25 183.33

cents deviation 0 15.69956 -48.7097 -15.7203



Half diminished 

seventh 

(=TRISTAN Chord ) 

A C E-flat G     EQ 

frequencies 110 130.81 155.56 196

cents deviation 0 0 0 0

(1) (6/5) (45/32) (16/9) JS 

frequencies 110 130.81 154.69 195.56

cents deviation 0 15.69956 -9.72273 -3.89613

(1) (6/5) (11/8) (14/8) OV 

frequencies 110 130.81 151.25 192.5

cents deviation 0 15.69956 -48.7097 -31.2369

Petrushka Chord 

(transposed) 
A C-sharp E B-flat E-flat G EQ 

frequencies 110 138.59 164.81 233.08 311.13 392

cent deviation 0 0 0 0 0 0

(1) (5/4) (3/2) (32/15) (45/16) (32/9) JS 

frequencies 110 137.5 165 234.67 309.38 391.11

cents deviation 0 -13.6886 1.997419 11.78595 -9.77845 -3.94046

(1) (5/4) (3/2) (34/16) (22/8) (28/8) OV 

frequencies 110 137.5 165 233.75 302.5 385

cents deviation 0 -13.6886 1.997419 4.976177 -48.7655 -31.2369

 

 

Pentatonic 

Chord 
A B C-sharp E F-sharp   EQ 

frequencies 110 123.47 138.59 164.81 196 

cent deviation 0 0 0 0 0 

(1) (9/8) (5/4) (3/2) (5/3) JS 

frequencies 110 123.75 137.5 165 183.33 

cents deviation 0 3.926938 -13.6886 1.997419 -15.7203 

(1) (9/8) (5/4) (3/2) (13/8) OV 



frequencies 110 123.75 137.5 165 178.75 

cents deviation 0 3.926938 -13.6886 1.997419 -43.8595 

 

5. Results 

In dominant seventh chord, there were clear difference between Equal temperament and 

Overtone based tuning. 

 

FIGURE 13  dominant seventh chord in EQ (Equal Temperament) and OVT (Overtone) tuning 

 

While the higher overtones from Equal temperament dominant seventh chord shows an unstable 

quality caused by beating phenomenon, the Just tuned dominant seventh chord’s spectrum is 

much more stabilized.   

The largest difference occurred at the 3rd harmonics of the fundamental-A2 (here E4), which 

coincide with the 2nd harmonics of E3, which is also E4: 



 

FIGURE 14 – 3rd harmonics of dominant seventh harmony tuned in EQ 

 

FIGURE 15 – 3rd harmonics of dominant seventh harmony tuned in JST and OVT 

The harmonic fluctuation of E3 of Equal temperament system comes from the frequency 

beating phenomenon, between the third harmonics of A2=330 Hz and the second harmonics of 

E3=329.62 Hz.  Beating phenomenon comes from the combination of two complex signals: 

Z1  ,  A1  , e 1      1   A1  ,   cosw1 t i sinw1 t  

Z2  ,  A2 , e 2      2   A2  ,   cosw2 t i sinw2 t  

 

 

 



The total amplitude becomes: 

  |Ztotal|   |Z1 |   |Z2|  2Re Z1Z2  

    A1 ,  A2 ,  2Re A1 , A2 , e 1      1   2     2  

If we change e 1      1   2     2  into trigonometry function, this becomes: 

 |Ztotal| A1 , 2   A2 , 2    2A1 , A2 , cos w1   w2 t φ1  φ2   8 

 

By using this formula, we can see the beating in 0.38 Hz comes out from the frequency 

difference between 330 Hz and 329.62 Hz, since 0.38 Hz is less than the critical band for human 

hearing.  This beating only comes out from the equal tempered dominant chord, and is not 

prominent at the Just tuning and Overtone tuning system, which is demonstrated in the result 

above.  This phenomenon becomes more prominent in the higher frequencies in Equal 

temperament system, since the amounts of frequency deviations become larger in the higher 

overtone area as FIGURE 13 shows.  For example, the 10th overtone of A2 is 1100 Hz, and the 

8th overtone of C#3 is 1108.72 Hz, and the beating frequency here is 8.72 Hz which is much 

larger than the lower harmonics.  There will be much more beating frequencies in the higher 

overtones, since the integer multiples of Least Common Multiple of the three fundamentals will 

coincide in the higher register.  The difference caused by beating becomes clearer in the 

pentatonic chord because of the pure integer ratios and more fundamentals, and we will see later.  

Also, the relative phase shift of each harmonic was much more adjacent in the OVT tuning: 

                                          
8 Errede, Lecture note 11, p 7-10, 

http://courses.physics.illinois.edu/phys406/sp2014/Lecture_Notes/P406POM_Lecture_Notes/P406POM_L

ect11.pdf, accessed [20140507, 00:39] 



 

 

FIGURE 16 – relative phase shift of dominant seventh chord in EQ and OVT tuning 



In a chord like Petrushka chord, the OVT tuned chord spectrum shows remarkably abundant 

higher frequencies than the EQ tuned chord, especially from 800 Hz to 1000 Hz: 

 

FIGURE 17 – Petrushka chord spectrum in EQ and OVT tuning 

 

Not only the OVT tuned chord spectrum shows rich harmonic spectrum, but also the higher 

overtones are in more stable qualities than those of EQ tempered chord harmonics.  This can be 

identifiable in FIGURE 18, in which the peak of each harmonic partial is more distinguishable in 

the Overtone tuning than the Equal temperament tuning especially between 200 Hz and 500 Hz. 

(See FIGURE 18)  This can open up the new ways of interpreting modern classical 

compositions which employ significantly larger amount of dissonances than the previous 

classical compositions, and give a new direction for the systematical compositional approaches 

based on the Acoustic phenomena in the classical music of future.   



 

 
FIGURE 18 – Petrushka chord spectrum in EQ and OVT tuning 



Another striking difference came out from the pentatonic chord: 

 

FIGURE 19 – pentatonic chord in EQ and JST tuning 

This is not easily identifiable from the spectrogram above, but easily distinguishable by ear.  As 

the spectrogram suggests, the chordal quality of pentatonic chord is prominent in the 2nd and 3rd 

harmonics, while the 1st harmonics (fundamentals) are not prominent and steady as shown above.  

(See FIGURE 19, where the frequencies below 196 are not prominent and unstable.)  However, 

from the 2nd harmonics, the frequencies show clearly identifiable amplitudes, and the clear 

integer ratios between the pitches become more emphasized.  For example, the 3rd harmonics of 

EQ tuned pentatonic chords are in the ratio of 3:3.37:3.78:4.49:5.35 = 

24:26.96:30.24:35.92:42.8 while the JST tuned pentatonic chords are in the ratio of 

3:3.375:3.75:4.5:5 = 24:27:30:36:40 which are in pure integer ratio relationships.  The 

difference between these two ratios is quite distinctive when one listens to the 3rd harmonics only, 

even to those who is not familiar with western musical system.  For example, the fourth 

harmonics of low B(123.47 Hz) is 493.88 Hz, and this meets with the third harmonics of E 



(164.81 Hz) = 494.43.  These harmonics generate beating in the Equal temperament system in 

0.55 Hz.  This beating is much lesser in the just tuned chord, in which the fourth harmonics of 

low B (123.75 Hz) and the third harmonics of E (165 Hz) are exactly identical = 495 Hz, if the 

pitches are tuned precisely. (See Figure 20, 21) 

 

 

FIGURE 20 – the 4th harmonics of B and 3rd harmonics of E from EQ and JST tuning 

 

The degrees of phase shift from each harmonics also are more consistent in the Just tuned 

pentatonic chord. (See Figure 22)  If the beating phenomena are added which is aforementioned 

in the dominant seventh chord, the difference becomes clearer. 



 

 

FIGURE 21 – the 4th harmonics (495 Hz) from pentatonic chord in EQ and JST tuning 

 

This can demonstrate the reason why the East Asian musical scales based on the pentatonic 

system do not use Equal temperament tuning system; the pentatonic scale sounds much more 

stable and balanced when it is based on Just tuning system.  This feature is also shown in the 

FIGURE 22 and 23-spectrograms of both tunings.  While the overtones from 330 Hz to 3300 

Hz of Just tuned chord are more stable without beating, those of Equal temperament show 

unstable decaying process. 

 



 

 

FIGURE 22 – relative phase shift degrees of pentatonic chord in EQ and JST tuning 



 
 

 
FIGURE 23 – Spectrograms of pentatonic chords in EQ and JST tuning 



6. Conclusion 

 

The expected consonances with frequency deviations between Δf and 2 * Δf of Equal tempered 

chord were not prevalent in the actual chords’ sounds.  On the contrary, in many chords Just 

tuned or overtone based tuned harmonies showed more stable and consonant quality than the 

Equal temperament based harmonies.  Especially for the dominant triad, the non-conventional 

frequency ratio 4:7 made a striking difference between Equal temperament and overtone based 

tuning system, and this is also noticeable easily by ears.  Even in the modern harmony-

Petrushka chord, this overtone based tuning engendered a much more abundant and lavish 

harmonic spectrum, and gave a new possibility of employing multitudinous tuning ratios in the 

future classical compositions.  In the pentatonic scale and harmony, Just tuning system showed 

much more lucid and crystallized quality than that of Equal tempered tuning system.  This was 

prominent especially above the third and higher harmonics, because the deviations between 

fundamental ratios come out more in the frequency range.  The overall results demonstrate that 

the quality of consonance and dissonance does not entirely depend on the limited tuning system, 

but on the correlations between the harmonic content, their frequency ratios, and the tuning 

system.  For example, the consonant quality of dominant seventh chord in the overtone based 

tuning system was more effective than the other tuning systems, while the pentatonic chord in 

the Just tuning system was clearer than the other tuning systems.  This witnesses the fact that 

the tuning system can be diversified based on the myriad of musical context, not only dominated 

by a single Equal tempered tuning system. 
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