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Introduction 
 

Cross-correlations are among the simplest and most broadly useful tools in signal processing, 
providing a quantitative measure of the similarity of two waveforms. In this paper, we show that 
the cross-correlation can be expressed as a vector product in Fourier series parameter space. This 
causes Fourier series approximations to be a precise means of comparing sets of signals, 
especially when those signals have relatively few data points. We apply this method to a study 
on oxygenation signals in the brain, where this is exactly the case. Due to this method’s 
applicability with shorter signals, we were also able to use it to compare sound samples on the 
order of 10 ms in order to correlate instrument sounds, both with each other and with themselves 
at different points in a longer sample. 

 

The Cross-Correlation Function 

Given waveforms f(t) and g(t), the cross correlation function is defined as  

∘ ≡ ∗   

where * refers to complex conjugation and τ is the time lag between the two signals. For 
example, suppose we have  

0.25   

.  
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In the plot on the left, f(t) is the orange curve, and g(t) is the blue curve. The cross-correlation 
function of f and g is shown on the right.  

The cross-correlation function reaches its maximum value at approximately τ = 1 which is 
defined as the amount of time that g(t) lags behind f(t). This time lag corresponds to the peak of 
g(t) lining up with the maximum of f(t). While f(t) has a second maximum at t = -1.15, it is a 
smaller peak. This example provides an intuitive understanding of how the cross-correlation 
function works: The cross-correlation function shifts one signal until the maxima of both signals 
are at the same point in time. The amount that the first signal is shifted is said to be by how much 
the first signal lags behind the second.  

When the cross-correlation function is negative, this corresponds to a negative correlation or 
anti-correlation between the two signals. For our example the magnitude of the cross-correlation 

function at its minimum (located at τ = 3) is smaller than the magnitude at its maximum. Hence 
we would say that the two signals are correlated rather than anti-correlated.  

Supposes we have three signals a, b, and c. If we want to compare the correlation of signals a and 
b to correlation of signals a and c, we first need to normalize the cross-correlation function such 
that the cross-correlation of each signal with itself is 1. For example, suppose a and b are the 
same function and that c is twice that function, then, without normalization, the cross-correlation 
function would say that a and c are twice as correlated as a and b. Since we expect the cross-
correlation of all three signals to be the same, the unnormalized cross-correlation function is 
somewhat dubious.  

If f and g are discrete one dimensional arrays, then the integral in the cross-correlation function 
becomes a sum, and the cross-correlation function is a sliding dot product.  

∘ ≡ ∑ ∗ .  

 

 

The Fourier Series 
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It is a well-known property that sines and cosines obey the orthogonality relations 

sin sin cos cos    

sin cos sin cos 0  

where the integrals are taken over an interval given by   which is the period when m and n are 

equal to one. Because of these orthogonality relations we can define a completeness relation such 
that an arbitrary function f(t) can be written as 

∑ cos sin   

such that  

  

cos   

sin .  

Upon initial glance, it appears that we have made f(t) much more complicated; however, suppose 
we are given an arbitrary signal as a function of time. We can approximate this signal with a 
finite number of terms in the Fourier series, where it should be understood that adding more 
terms to the series will make the approximation more accurate.  
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In the figures above, the source signal is dominated by low frequency modes, so we can 
reasonably fit the source signal with relatively few terms in the Fourier series. In fact, this is a 
good way of thinking about the Fourier series. Essentially, each component of the Fourier series 
corresponds to a sinusoid oscillating at a particular frequency. Therefore, the relative importance 
of a particular frequency to the signal is encoded in the relative size of the Fourier coefficient. 
The ao coefficient is the average of the source signal. 

The construction of the Fourier series is a linear process which implies that we can encode the 
Fourier components in a linear vector space. If we approximate the source signal with k-terms in 
the Fourier series, then the linear vector space will have dimension 2k+1. For our purposes, we 
will subtract off the mean of the source signals, so ao = 0, and our vector space is of dimension 
2k. A vector in this space would be written f=(a1, a2, … ak, b1, b2, … bk). We can promote our 
vector space to an inner product space by defining an inner or dot product given by 

〈 , 〉 ∑   

which is the conventional definition of the dot product. Since we have a definition of an inner 
product, we can normalize a signal such that its inner product with itself is 1: 

〈 , 〉
 

The hat is used to denote the fact that we now have a unit vector in this 2k dimensional space. 
Because the signal is now represented as a unit vector, we can understand how important each 
oscillation frequency is to the signal. For instance if aj = 0.8, this means that cos(jωt) comprises 
aj

2 = 0.82=0.64 or 64% of the signal.  

Suppose we have two signals f(t) and g(t) which we write in Fourier series vector space as unit 
vectors. We can compare how similar the two signals are to each other via the inner product  

	 ≡ 〈 , 〉 cos   

which must be bounded from negative one to one. If r = 1, then the two signals are identical up to 
some positive multiplicative factor. Similarly, if r = -1, then the two signals are identical up to a 
negative multiplicative factor. For r = 0, the two signals are orthogonal which implies that there 
is no correlation between them. Positive values of r indicate a correlation between the two 
signals, and negative values of r indicate an anti-correlation between the two signals. The larger 
the magnitude of r, the more strongly correlated the two signals are to each other. Hence r can be 
used as a measure of how correlated the two signals are to one another.  

For an intuitive understanding of what the inner product means, we can decompose  into two 
components: one that is parallel and one that is orthogonal to . Hence, 

〈 , 〉 1 〈 , 〉 	 	√1 	   
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where 	  is the part of  orthogonal to . Using the second definition of r in terms of θ, we find 
that  

‖ ‖cos ‖ ‖sin cos sin 	.  

Suppose you are given a correlation value r between  and , how similar are the two signals? 
The value of r encodes how much the signals overlap. Another way of thinking about the 
correlation value r, is that the value r2 is the percentage of signal  which is comprised of 
signal	 . For instance, if r = 0.6, then there is an r2 = 0.36 or 36% of  is comprised of .   

The Fourier Series and the Cross-Correlation 

 

In the previous section, we outlined a second method for measuring how similar two signals are 
to one another. In this section, we will show that the Fourier series method is actually just the 
cross-correlation method in disguise. Given two signals f(t) and g(t), the cross-correlation of f 
and g is  

∘ ≡ ∗ .  

We can rewrite the functions in the integrand using their Fourier series. Thus we find that 

∘ ∑ cos

sin ∑ cos sin   

where we have subtracted off the average value from both signals and the integration range is of 

length . If we flip the order of integration and summation, the orthogonality conditions for 

sines and cosines reduce the expression to 

∘ 0 ∑ 〈 , 〉.  

Therefore, the cross-correlation function at τ = 0 is proportional to the Fourier series inner 
product. This proportionality constant is eliminated when the signals are normalized. An 
important note is that we have shown that this is true at τ = 0. To show that the relation holds for 
all τ, we need to define how the Fourier series is affected by adding τ. In particular, the Fourier 
coefficients at order m are 

cos sin .  

Now, cosine and sine follow a set of properties called the sum and difference relations which say 
that the previous expression is equivalent to 

′ cos ′ sin  where 
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cos sin 	 and 

cos sin   

which means that we simply perform a Euclidean rotation by an angle nωτ, which can be seen in 
the matrix equation 

′
′

cos sin
sin cos . 

Hence, we may write that 

∑ ′ cos ′ sin .  

Writing the Fourier series in this way allows us to calculate the Fourier coefficients once and 
then simply rotate them using the aforementioned rotation matrix to determine the coefficients as 
a function of time delay τ. Note that only terms of the same order can rotate into each other. 
Therefore,  ′  will only depend on terms of order m. Therefore we find that  

∘ ∑ cos

sin ∑ ′ cos ′ sin   

which is equal to 

∘ ∑ ′ ′ 〈 , 〉 .  

Therefore cross-correlation of f and g is proportional to the inner product of the Fourier series 
expansions of f and g as a function of time lag. Once we normalize our Fourier space vectors f 
and g we find that the two methods produce identical results.  

 

Application to Neuroscience 
A study was conducted where the oxygenation levels of hemoglobin in the frontal lobes was 
measured for children with Fetal Alcohol Syndrome (FAS) as well as a control group. The 
oxygenation in the frontal lobe is important because it oxygen is necessary to metabolize glucose 
which provides energy for neurons. Oxygen is transported to this area via oxygenated 
hemoglobin in blood. Therefore, the amount of oxygen in hemoglobin in the frontal lobes 
correlates how much brain activity is occurring in that region. The oxygenation levels were 
measured by a device with 16 optodes arranged across the frontal lobe as shown in the figure 
below.  
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To measure the amount of oxygen in the hemoglobin, the device shines light at a given intensity 
on a region of the frontal lobe where the light scatters back to one of the optodes where a 
detector measures the new intensity of the light. Given the ratio of the intensity of the source 
light to the intensity of the detected light, the device calculates the amount of oxygen using the 
Beer – Lambert law. A cartoon description of this process is shown in the figure below. 

 

 

 

 

 

 

 

 

The oxygenation levels are then recorded as a function of time with measurements taken at one 
second intervals. While the measurement is taken, the subjects play a computer game in which 
there are seven parts or blocks. During the odd number blocks, the subject wins the game, and 
during the even number blocks the subject loses the game. In this way, we can quantitatively 
examine how the subject’s brain reacts to positive and negative stimuli. For this report, we 
examine only the win trials or positive stimuli.  
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For example, the oxygenation levels of hemoglobin in the frontal lobe as a function of time of a 
control subject during a win trial are provided below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the plot, we can qualitatively see that most of the sixteen signals have a similar peak 
between times of sixty and eighty seconds followed by a double humped peak between 140 and 
160 seconds. Overall, the signals seem qualitatively similar. We want to measure how correlated 
the signals are as well as how much time delay there is between two signals. To find the time 
delays, the simplest technique would be to apply the cross-correlation method between all 
combinations of the sixteen signals. This would generate 256 correlation values, which need to 
be normalized otherwise we cannot compare them, as well as 256 time delays. The problem with 
the standard cross-correlation method, in this case, is that the data was taken at one second 
intervals which means that we can only find time delays at one second intervals leading to errors 
on the order of one second caused by rounding. In turn, this limits how accurate the correlation 
values can be leading to even more error.  

Alternatively, we can use the Fourier series inner product method which we were able to show is 
equivalent to the cross-correlation method. Because moving the Fourier series forward or 
backwards in time is achieved by performing a Euclidean rotation by an angle nωτ, we see that 
for arbitrarily small τ, we can define the Fourier series. Theoretically, this implies that we can 
calculate arbitrarily small time delays; however, computationally, there is a limit on the accuracy 
based on how many digits the computer stores during each operation. For this reason, we resolve 
only time delays to a tenth of second which have errors on the order of a tenth of a second.  
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We apply the Fourier series inner product technique and find two sixteen by sixteen matrices 
which we represent in the form of heat plots. The values of the correlation values are provided 
below. 

 

Note that the scale of the correlation heat map has a range of r = 0.55 to r = 1. Therefore, even 
the lowest correlation values are still moderately correlated. One quick general feature of these 
correlation plots is that they must be symmetric and have 1 as every diagonal entry. The 
correlation plot must be symmetric because the correlation between signals f and g is equivalent 
to the correlation between signals g and f. The diagonal starting at the bottom left and moving to 
top right must be identically 1 because this measures the correlation between a signal and itself 
which was normalized to 1.  

In the figure above, there are two vertical and two horizontal grey bands at optodes two and four. 
These represents signals that were not recorded correctly by the detectors. Signals that report 
NAN can easily be spotted on these heat maps because the correlation between the signals with 
itself will not be 1. Qualitatively, there is strong correlation between signals 5 through 16, while 
there was most likely some error in taking the oxygenation levels for signals 1 through 4. This 
supposition is supported by the comparatively lower correlation between these signals and the 
other signals as well as the lack of information from optodes 2 and 4. For signals 5 through 16, 
the strongest correlations come when we compare the signals that are located nearest each other 
which is evident by the highly correlated parts of the heat map along the diagonal; the off 
diagonal terms are comparatively less correlated. Intuitively, this is a reasonable result as when 
the optode numbers are closer together, then the physical detectors are closer together and they 
should thus register similar signals.  
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Additionally we can make a heat plot of the time delays for this subject which is reproduced 
below. 

 

A general feature of these time delay heat maps is that they are antisymmetric and are zero along 
the diagonal. The former is because if the time delay between signal f and g is two seconds, then 
the time delay between signal g and f must be negative two seconds. The diagonal from bottom 
left to top right must be zero because there is no time delay between a signal and itself.  

In the figure above, note that there is significantly more time delay for signals 1 through 4 than 
for 5 through 16. This furthers the supposition that the device did not accurately measure these 
signals. Additionally note that the two signals which reported NAN, signals 2 and 4, say that the 
time delay is negative 10 seconds. Since these detectors reported no signals, any value for the 
time delay is meaningless. 

A second interesting feature that was found in the time delay plot is that increasing the range in 
which we search for time delays can significantly alter the correlation value. For instance, below 
are two correlation heat maps from a subject with FAS during a win trial. For the first plot, we 
only allowed time delays of plus or minus 10 seconds. In the second, we broadened our search 
and permitted time delays of plus or minus 30 seconds. The code calculates the correlation 
coefficient at 0.1 second intervals over the respective ranges and reports the maximum 
correlation value magnitude in this interval. By using the magnitude, we can account for the 
possibility of negative correlation between the signals. Since the first range is a subset of the 
second range, it follows that the magnitude of the correlation value can only increase from the 
first plot to the second plot, so the second heat map will appear as dark as or darker than the first. 
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In fact, we can clearly see a noticeable difference in the correlation values in several of the areas. 
From the 10 s plot, we see that signals 4 through 12 are strongly correlated, and that there is a 
block diagonal pattern of strong correlation. This can be seen by the rectangles of strong 
correlation along the diagonal. This is a reasonable result for brain behavior in that it implies that 
signals close to each other behave in similar fashion. For the 30 s plot, we still see the block 
diagonal pattern somewhat; however, signals 1 through 12 are now, including the anti-correlated 
signal three, all strongly correlated.  

Because we found larger correlation values, it may seem logical to always expand the time delay 
range to the maximum possible value, which would be the length of the signal. If the difference 
in correlation values were always small, then we could use only the smaller range time delays. 
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However, while we find larger correlations for the larger time delay search, these larger 
correlations are somewhat meaningless. To begin with, we can impose a physical constraint on 
how much two signals could possibly lag behind each other. 10 seconds is a reasonable estimate 
for the period over which a signal in one area of the brain could affect a signal in another area. 
Further research on oxygenation patterns in the brain may improve the accuracy of this estimate. 

 Moreover, recall that the Fourier series method is equivalent to the cross-correlation method, 
and that the cross-correlation method acts as peak finder in the sense that it matches the largest 
maximum of each signal with one another. This, however, does not always accurately represent 
how a signal changes across measurements. For instance, if one optode measures a signal with 2 
peaks, the left taller than the right, and another optode measures a nearly identical signal, but 
with the right peak having the higher magnitude, a cross-correlation would match the largest 
peaks rather than matching each peak to its analogue. If the time delay is of the same order as the 
width of one of those peaks, however, this cannot occur. Therefore, we must impose a limit to 
the time delays so that the cross-correlation matches the signals in a more intuitive manner. 

 

Comparing FAS and Control Correlations 

The goal for this brain signals analysis is to determine if on average there is a difference between 
the correlations of the signals from the control group with the correlation of the signals from the 
FAS group. The simplest test of the strength of the correlation in the general case would be to 
take the magnitude of the correlation values and average them component by component. In 
other words, take the average of all of the 16 by 16 correlation matrices as well as the standard 
deviations for the control and FAS groups. In this way, we can construct a confidence interval 
for each component. In addition, we need to consider the error in calculating the Fourier series. 
For our purposes, we use a 40-term Fourier series. Since the brain signals are dominated by low 
frequency terms, this is sufficient to produce a standard deviation between the original signal and 
our approximation on the order of 10-3.  

While we have not been given the data to perform a full analysis, we were given some signals 
from subjects in the control group to test the viability of the code.  The correlation of the signals 
from one of these subjects is reproduced below.  
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One interesting feature of this heat plot is that there is very little strong correlation which is a 
direct contrast to both of the previous plots shown. In fact, most of the samples that we were 
given had weaker correlations. We discovered that these subjects in the control group had a 
lower than average IQ. In fact, the plot below shows the correlations for a subject with an 
average IQ. In this plot, it is clear that there is strong correlation along the diagonal and weak to 
moderate correlation off the diagonal which represents the correlation between regions of the 
brain that are farther apart.  
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When a control group is set up, it is important for the sample to be representative of the 
population. It turns out that the small set of sample data that we were given to test had a 
disproportionate amount of subjects with below average IQ’s. Interestingly, we were able to 
detect the lower IQ subjects using the Fourier series method which indicates that the correlation 
of the brain signals may be dependent upon the intellectual capability of the subject, and the 
difference was apparent from the Fourier series method. Of course, this dependence should be 
verified by a larger sample size before any conclusions can be reached. 

While with our current small set of data no effect of FAS on brain signal correlation can be 
confirmed, it is evident that our cross-correlation plots can be successful at identifying broad 
neurological trends. For instance, in the plot below, which represents an FAS win trial, the 
signals from optodes 1 through 8 are clearly well-correlated with each other, as are signals 9 
through 16, but the correlation between these two blocks is much lower. As can be seen by 
referencing the way the optodes were arranged relative to the brain, this shows that the two 
halves of the brain are communicating poorly. Whether this is an effect that is more common in 
subjects with FAS remains to be seen in future trials. 

 

As a side note, this plot clearly displays a checkerboard pattern where correlation is high within 
the set of even or odd optode numbers but slightly lower between sets. This is an expected 
consequence of the setup of the detector since, as can be seen by referring again to the picture of 
the array, one row contains even numbers and the other row contains odd numbers. Since 
optodes are closer to other optodes in their row than to those in the other row, we would expect 
the signals to be more correlated. That this is easily observable from the cross-correlation 
heatmap is further confirmation that the method accurately assesses the similarity of the brain 
signals. 
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Applications to Sound Waves 
 

The same programs and methods that allowed us to correlate brain activity can shed light on the 
properties of sound waves. A natural application is analyzing the sound waves produced by 
musical instruments; unlike more synthetic sounds, they have nontrivial harmonics and 
fluctuations in amplitude and frequency that are often too subtle to hear. Even a series of 3-to-5-
second audio samples of various instruments playing a sustained note contains a wealth of 
information that can be interpreted by cross-correlation. 

 

Time-Dependent Correlation Loss 

The unique sound produced by a musical instrument is typically described as being dependent on 
a similarly unique combination of harmonic amplitudes. This combination is in fact highly-time 
dependent, shifting constantly from second to second – while this effect is well known, our 
cross-correlation method provides an intuitive way to quantify the extent with which a sustained 
note changes its frequency distribution in time. 

For this study, all of the instrument sound samples were playing the standard note A4, which has 
a frequency of 440 Hz. Thus, the dominant features of the sound wave were expected to appear 

in the 
	 	~	2.72	  range. In order to include both these features and those at lower octaves, 

the sections of the samples we analyzed were 10 ms long. The cross-correlation program 
automatically matches up waves with disparate phases, so it was not necessary to have an integer 
number of periods in each section or to start each section at the same point in the wave’s periodic 
structure. To show how the time-dependent wave changes with the duration of the sustained 
note, we extracted 10 ms data at 0.5 s intervals for various instruments. For instance, below are 
plots of the amplitude (normalized with respect to the largest amplitude in the entire 5-second 
sample) vs. time from a violin starting at 1 second and again starting at 2 seconds: 
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Note that the note has increased in volume from 1 second to 2 seconds, with the amplitude of the 
2s wave being greater by a factor of almost 2. However, these changes are not taken into account 
by the correlation program since the waves are normalized such that the integral of the square of 
the function is 1. This is fortunate because it allows the program to discern much more subtle 
changes to the wave structure, such as the emergence of a small peak immediately after the 
largest peak of each period between 1 and 2 seconds into the audio sample. 

Using the same program that correlated the 16 channels of each trial in the neuroscience study, 
we compared the 6 sections of the violin sample taken at each 0.5-second interval between 1s 
and 3.5 s. Sections at earlier and later times were omitted since the samples contained the start 
and end of each note, which were not the focus of this study as the changes that occur during the 
sustained note are much more difficult to observe by other means. Just as with the brain pattern 
data, the correlations between any 2 signals can be visualized as a heatmap: 

 

Note again the plot scale: these signals are much more correlated than those from the 
neuroscience study, which is unsurprising because all of the signals have the same dominant 
frequency and, on average, the relative prevalence of harmonics characteristic of a violin. Even 
the first row and column, which are blue to signify that the signal changes a comparatively large 
amount in the third half-second of the sample, are at above 90% correlation with the rest of the 
sample. This sudden change is a transient effect from the start of the note at ~0.5 seconds which 
becomes negligible by 1.5 seconds into the sample but nevertheless differentiates the 1-second 
signal from the rest. 
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Since the frequency spectrum of the note changes with time, we would expect sections of the 
sample taken at longer time intervals apart to be less correlated with one another, and indeed, 
that is exactly what we observe, since the correlation decreases as distance from the main 
diagonal of the plot increases. If we graph the cross-correlation of each of this heatmap’s 21 
unique data points (accounting for the matrix symmetry) as a function of the time difference 
between them, we can clearly see a linear decrease in correlation with time once the transient 
effects from the 1s wave are discounted. 

 

The negative slope of the line represents how fast correlation in an instrument changes, and so 
provides a basis for comparison between various instrument sounds. For the purposes of this 
paper, we can say that an A4 played on a violin has a correlation loss coefficient of 0.014 s-1. 
However, there are too few data points to report this value with very much confidence; collecting 
more sound samples of instruments playing sustained notes and more data points per sample 
would improve the reliability of this coefficient and is therefore a good candidate for future 
study. Indeed, this linear change can’t continue forever, so we can take it to be the first-order 
approximation to a more complicated relation between time delay and a loss of correlation. 
Further work could more precisely identify this relation. 
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Correlation Loss in Other Instruments 

Now that these methods have been established for the violin, we can compare the rate at which 
the violin’s sound waves become uncorrelated with the corresponding rates of other instrument 
sounds. One sound of particular interest is a plucked violin string. Since the sound rapidly 
diminishes in amplitude, it is worth asking whether it becomes uncorrelated at a similar rate. 
Producing a heatmap of 10 ms sounds from a plucked violin sound sample, taking data at 
intervals of only 0.1 seconds, shows immediately that this is the case: 

  

When the plucked violin string’s correlation is plotted as a function of time delay, it can be 
shown to have a correlation loss coefficient of 1.2, 2 orders of magnitude above that of the violin 
played with a bow. 

 



19 
 

We then analyzed an electric guitar, a clarinet, and a saxophone, which all displayed the typical 
time-dependent correlation loss that we observed previously in the violin and had correlation loss 
coefficients of 0.15, 0.027, and 0.033, respectively. These values indicate that the clarinet, 
saxophone, and violin produce less variable sound waves over an amount of time on the order of 
1 second than an electric guitar. 

While this information does not imply that frequency spectrum fluctuations of an electric guitar 
are substantial enough to be discernable by the human ear, further research could determine the 
level of correlation loss that is noticeable. For instance, a synthetic sound could be constructed to 
accumulate random noise over a time interval on the order of 1 second, and a participant could 
indicate when they notice that the sound has deviated from a constant pitch. With enough data, 
such a study could allow analyses like the one described in this paper to provide practical data on 
the qualities of a musical instrument’s sound. 

 

Direct Instrument Comparison 

In addition to measuring the correlations between different sections of a single sound sample, our 
method can directly compare the wave structures of any two musical instruments’ sustained 
sounds. This effectively allows us to obtain a simple value from 0 to 1 representing how much 
two instruments sound alike. 

Due to the general rule that correlation is lost as time delay increases, a 10ms section from the 
middle of a sample, having the least average absolute time delay with the other signals in that 
sample, thus has the highest average correlation with the rest of the sample. For this reason, we 
selected the sound wave from 2 seconds into each sample (or 0.8 seconds for the case of the 
plucked violin string) to represent the sound of that instrument. We then correlated each sound 
wave with those of the other instruments to produce the correlation values in the table below: 

 

 Clarinet Saxophone E. Guitar P. Violin B. Violin 
Clarinet 1.0000     0.5481     0.6160     0.6527     0.5477 
Saxophone 0.5481     1.0000     0.3475     0.5713     0.4132 
E. Guitar 0.6160     0.3475     1.0000     0.3907     0.3991 
P. Violin 0.6527        0.5713 0.3907     1.0000     0.5331 
B. Violin 0.5477     0.4132     0.3991     0.5331     1.0000 

 

 

This yields some surprising results. For instance, since the clarinet is in its construction more 
similar to the saxophone than to any of the other instruments, one would expect its sound to have 
a similar quality. However, the correlation values would suggest that it the time-dependent 
function is actually more similar to that of the electric guitar. Similarly, the plucked violin string 
and the bowed string do not produce very correlated sounds despite being produced by the same 
instrument. 
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This last effect may be explained by the fact that, just as we ignored the transient effect from the 
beginning of the bowed violin’s sound sample due to the cross-correlation loss not being 
representative of the sustained sound, so too is the plucked violin string data unreliable. Because 
the correlation is lost so rapidly in the plucked string case, transient effects from the initial 
impact of the string dominate the sample. In this sense it may not be meaningful to compare the 
plucked string to the other instrument sounds at all. 

 

Possible Future Work 

This work is primarily a proof-of-concept for using normalized cross-correlations to compare 
signals to each other and to themselves at different times. As such, there are a number of possible 
extensions and applications of the ideas of this paper. 

For instance, an obvious continuation of this work is to collect and analyze more instrument 
samples and compare them to each other using an array of cross-correlations. All of the 
instrument amplitude signals analyzed in this study had cross-correlations of between 0.39 and 
0.66, which is a range that one would expect to see in sounds that have the same dominant 
frequency but are otherwise entirely unrelated (in contrast to the correlations on the order of 0.9 
that were obtained when the samples were compared with themselves at later times). It would be 
interesting to see examples of instruments that produce much more similar signals, and to see 
whether this similarity in sound waves corresponds to any other connections between the 
instruments, such as the material from which they were made or the type of vibrations they 
produce (i.e. are they woodwinds, strings, percussion, etc.). 

The time-dependent correlation loss study could benefit from the same type of expansion, with 
more instruments being analyzed to see if any connections can be drawn between the extent of 
the correlation loss and any attributes of the instrument. The electric guitar had significantly 
more correlation loss than the other instruments tested (again ignoring correlation loss due to 
transient effects from the start of the note). It is still unclear whether this is a trait unique to the 
electric guitar, whether it is a trait all electric instruments share, or whether, with more data 
points taken and more electric guitar sound samples analyzed, this effect will turn out to have 
been statistical error. 

Finally, due to the sensitivity of cross-correlations to small changes in signals, this method can 
be used to evaluate the effects that making small changes to a musical instruments has on their 
sound quality. For instance, it can compare the sounds that a clarinet produces with one type of 
reed or mouthpiece to a competitor’s, or how the position at which a string is plucked changes 
the sound that is produced. The number of parameters that can be manipulated and compared 
using cross-correlation is innumerable. 
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Conclusion 
Cross-correlations, and, by extension, the Fourier series approximations to which they are 
related, can be effective methods for comparing signals, whether they are produced by musical 
instruments or by the brain. Their ability to produce quantities that condense the complexity of 
analyzing both signals to a number from 0 to 1 is both useful for interpreting the data and for 
understanding it in an intuitive way. Thus, the applications described in this paper represent a 
small fraction of the possible uses for this method. 


