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Trivially, all eigenmodes in a square waveguide are degenerate. These eigenvalues typically take on a form:
k ∝ m2 + n2 where m and n are positive integers, for example, the harmonic frequencies of acoustical waves
with square boundary conditions are given by: fm,n = c

2L

√
m2 + n2. The trivial degeneracy is fm,n = fn,m,

however multiple degeneracies can also arise. I analyze the ratio of simply degenerate states to all states and
show that this ratio appears to asymptotically approach 0.288 following a power law.

I. INTRODUCTION

In a general rectangular waveguide the frequencies of
the harmonics, or eigenstates, are given by:

fm,n =
c
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√(n
L

)2
+
(m
W

)2
In the case of a square waveguide, W = L and all of the
frequencies are degenerate as:

fm,n = fn,m =
c

2L

√
m2 + n2

Define k ≡ m2 + n2 so fm,n = c
2L

√
k. Thus the prob-

lem of analyzing eigenfrequencies reduces to analyzing
values of k. k is a legitimate eigenstate if it is an in-
teger composed of the sum of two integers squared. If
k is can be expressed as the sum of two squares, then
it will always be degenerate but only sometimes be sim-
ply degenerate. For k to be simply degenerate, m and
n are the unique integers that, when squared, sum to k.
For example, k = 50 is not simply degenerate because
12 + 72 = 52 + 52 = 50.

Interestingly, the angular momentum of the acoustic
field of two simply degenerate states at the center of the
square can be significant. A small, free spinning rotor can
be made to spin when placed in the center of the square
and a pair of simply degenerate harmonics are driven.

II. DETERMINING DEGENERATE EIGENSTATES

One can determine if any integer k can by formed from
the sum of two integers squared through an extension of
Fermat’s theorem on sums. Consider the prime factor-
ization of k:

k = 2α
∏
i

pβi

i

∏
j

q
γj
j

Where pi is a prime congruent to 1 mod 4 and qj is a
prime congruent to 3 mod 4.

If all of the γj exponents are even, then k is expressible
as the sum of two integers. It then follows that k can be
a harmonic frequency of the square waveguide. To show
that those two integers are unique, and thus the eigen-
state is simply degenerate, one must examine a result
from Minkowski’s geometry of numbers.

The expression k = n2 + m2 suggests a circular geo-
metric representation. For a solution to exist over the
integers, the circle of radius

√
k must intersect an integer

grid point (m,n). The number of intersections, where
both m and n are positive, is given by:

∏
i

(1 + βi)

For a simply degenerate eigenstate, there are only two
intersections and thus only one βi is equal to one, the rest
equaling zero. However, if k is a square number, then ad-
ditionally there are two more intersections: (

√
k, 0) and

(0,
√
k). So if k is square, then all βi must equal zero.

III. COUNTING DEGENERATE STATES

The above algorithm enables the rapid computation of
harmonic frequencies. I implemented this algorithm in
a Mathematica script, which rapidly counts degenerate
k up to k ≈ 107. For each integer, the script first de-
termines if it is degenerate, then determines if it is sim-
ply degenerate. These parameters are stored and a run-
ning count of degenerate, and simply degenerate states
is kept. Let the number of degenerate numbers less than
k, as a function of k, be: nd(k), and the number of sim-
ply degenerate numbers less than k, also as a function
of k, be ns(k). The asymptotic behavior of the ratio:
r(k) = ns(k)/nd(k) as k → ∞ appears to converge to a
constant value. Using Mathematica, I ran a regression
analysis on calculated values of r(k) using a generalized
power law model:

r(k) ≈ α

(k + σ)γ
+ ε

When k approaches infinity, this model approaches ε,
thus the ratio of all simply degenerate states to all degen-
erate states is near ε. Running the regression in Mathe-
matic on calculated values of r(k) with k = 1000 to 106

returns the following fitted values:

Estimate Standard Error Confidence Interval
α 1.01283 9.434× 10−6 [1.01281, 1.01286]
σ 677.314 0.123 [676.998, 677.631]
γ 0.121192 1.568× 10−6 [0.121188, 0.121196]
ε 0.287921 2.345× 10−6 [0.287915, 0.287927]



Simply Degenerate Frequencies 2

The confidence interval is at 99%. So as k → ∞, we
expect the ratio of simply degenerate states to all degen-
erate states to follow:

r(k) ≈ 1.01283

(k + 677.314)0.121192
+ 0.287921

This implies that the total number of simply degener-
ate states accounts for only 28.8% of all states, Though
at more physical and observable values, this ratios ap-
pears to be closer to (or greater than) 50%. Below are
graphs from the regression calculation of the model and
the residuals of the fit.

FIG. 1. A plot of the calculated values of r(k) as well as the
fitted power model (indistinguishable).

FIG. 2. A plot of the residuals of the model and the calculated
values of r(k).

IV. EXPERIMENT

In lab, I attempted to replicate the results of
Schroeder1 and use a simply degenerate frequency pair
to measure the angular momentum of the field, however,
I was unsuccessful in my attempt. To generate enough
acoustic radiation pressure, a very loud sound source is
needed and at audible frequencies this can be difficult to
work with in the lab. A very light, free moving rotor is

also need to spin in the acoustic field. I could not find
such a rotor that would work and Schroeder1 seemed to
use a makeshift yogurt cup and needle, something I could
not get to work.

The goal of the experiment was to drive a pair of sim-
ply degenerate eigenstates of a square box by driving two
speakers, placed on adjacent edges of the box, 90 degrees
out of phase at the frequency of the lowest simply degen-
erate harmonic. I used a box with a side length of 47cm,
the lowest simply degenerate k with nonzero angular mo-
mentum at the center of the square is 5, so the driving fre-
quency was: f = c

2L

√
5 = 815.93 Hz. With two function

generators attached to a oscilloscope, we could monitor
and adjusted the phase difference between the function
generators. The signals where amplified by two amps
then sent to two computer speakers in the square box.

While Schroeder1 performed the above experiment af-
ter discussing the relationship between simply degener-
ate and degenerate harmonics, I do not particularly see
the connection and the results obtained from counting
degenerate eigenstates cannot be easily measured to my
knowledge (especially at high frequencies).

V. CONCLUSION

Following Schroeder1, I implemented an algorithm de-
rived from number theory to count degenerate frequen-
cies in a square waveguide. Using this algorithm, a Math-
ematica script analyzed the asymptotic ratio of simple
degenerate to degenerate frequencies for values of k up
to 107. I find that, while at low frequencies - which
are inherently more physical and measurable - there are
more simply degenerate states than non-simply degen-
erate, asymptoticly it appears as if only about 28% of
harmonic frequencies are simply degenerate.

While this result is interesting, I am not sure it is sig-
nificant. Acoustic frequencies with magnitudes measured
in megahertz do not exist, the linear models of acoustics
break down before megahertz frequencies. This result
might be applicable to electromagnetic radiation or ob-
servable of a quantum particle in a square well, however
I am not sure what observables would arise in a simply
degenerate eigenstate versus a multiply degenerate eigen-
state.

It is possible that in a quantum system, the density of
these states - as measure by the ratio of simply degenerate
states - could have some significance, especially as a limit
as the value of the observable approaches infinity. In this
case it is interesting that at quantum levels, the density
of simply degenerate states is much greater than at much
larger and more classical levels.

VI. CODE APPENDIX

Below is the Mathematica code used to count degen-
erate states and run the regression. The function call
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simpleDegenerate[n] returns:

• {n, 1, 1} if n is uniquely expressed as the sum of a
unique pair of squares.

• {n, 1, 0} if n is not uniquely expressible as the sum
of a unique pair of squares.

• {n, 0, 0} if n is not expressible as the sum of two
squares

simpleDegenerate = Compile[{{n, _Integer}},

Module[{factors, f, f4, c1, c2, c3},

factors = FactorInteger[n];

c1 = 0;

c2 = Mod[Sqrt[n], 1] == 0;

c3 = True;

Do[

f4 = Mod[f[[1]], 4];

If[f4 == 1, c1 += f[[2]]];

If[f4 == 3, c3 = c3 && EvenQ[f[[2]]]];

, {f, factors}];

{n, If[c3, 1, 0],

If[c3 && ((c1 == 1 && c2 == False) || (c1 == 0 && c2)),

1, 0]}

]];

sdn = ParallelTable[simpleDegenerate[n], {n, 1, 10^7}];

sdnR = Transpose[{sdn[[;; , 1]],

N[Accumulate[sdn[[;; , 3]]]]/N[Accumulate[sdn[[;; , 2]]]]}];

(* Drops the first cutoffN values of n *)

cutoffN = 1000;

model = NonlinearModelFit[sdnR[[cutoffN ;;]],

a (n + s)^(-g) + e, {{a, 1}, {s, 0}, {g, 0}, {e, 0}}, n,

MaxIterations -> Infinity, ConfidenceLevel -> 0.99];

model["ParameterConfidenceIntervalTable"]

The NonlinearFit function is probably not ideal to use
with a dataset of 107 points, and it should be noted that
the confidence intervals and standard error parameters
are distorted with this magnitude of points.
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