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Relativistic Mechanics: Mass-energy Relation

Recap: in pre-relativistic physics the following situation holds:

(1) The space and time coordinates transform according to the “Galilean” prescription

x′ = x− vt, t′ = t.

As a result, velocities obey the “common-sense” composition law

vA−C = vA−B + vB−C

(2) The total mass of a closed system is conserved. (This is so “obvious” that it is
rarely stated!)

(3) As a result, Newtonian mechanics is invariant under Galilean transformations. In
particular if the momentum of a closed system is conserved in one inertial frame
it is conserved in any: if P =

∑
i mivi = const., then in frame S′

P ′ =
∑

i

miv
′
i =

∑
i

mi(vi − u) = P − u
∑

i

mi = P − uM

and hence P ′ =const. by (2).

(4) The laws of electromagnetism (optics) are not invariant under transformation to
a different inertial frame (hence the need to postulate the “ether”).

Einstein “corrected” (4) by postulating that a shift from one inertial frame to another
is implemented not by a Galilean but by a Lorentz transformation

x′ =
x− vt√
1− v2/c2

, t′ =
t− vx/c2√
1− v2/c2

(1′)

As a result, velocities do not satisfy the “common-sense” composition law, but rather
(lecture 12):

vA−C =
vA−B + vB−C

1 + vA−BvB−C/c2

With this transformation law, the laws of electromagnetism (optics) look the same
to any inertial observer.

Now, if this is so, it is very much in the spirit of special relativity to say: All the
laws of physics look the same to any inertial observer (as was true for mechanics in
pre-relativistic theory). But is this true for mechanics? I.e. is mechanics in fact Lorentz-
invariant?

A simple thought-experiment shows that we cannot, in special relativity, simulta-
neously maintain (a) the conservation of mass, (b) Newton’s laws with the standard
definition of momentum, and (c) general Lorentz invariance. Imagine a particle of mass
M which disintegrates, e.g. by a radioactive process, into 2 particles of mass m By (a),
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we must evidently have M = 2m. Consider now the conservation of momentum as seen
by (a) an observer O at rest with respect to M , (b) an observer O′ moving relative to
M with velocity + u.

According to O, the original momentum is zero and hence, by Newton’s second and
third laws, so must be the final momentum: since P = m1u1 + m2v2 and m1 = m2,
this implies v1 = −v2 = v as in the diagram. According to O′, the original momentum
is −Mu = −2mu. What is the final momentum? According to the relativistic law of
composition of velocities, he reckons

v′1 =
−u + v1

1− uv1/c2
=
−u + v

1− uv/c2
and v′2 =

−u + v2

1− uv2/c2
=
−u− v

1 + uv/c2

Thus, the total final momentum is

P ′(f) = m[
−u + v

1− uv/c2
+
−u− v

1 + uv/c2
] = −2mu[

1− v2/c2

1− (uv)2/c4
]

This is different from the original momentum P ′(i) = −2mu seen by O′ (note that u

can never be c in special relativity!). Thus, if we stick to the Newtonian definition of
momentum, and assume conservation of mass, mechanics cannot be Lorentz-invariant.
We are then faced with the choice

(a) live with this situation-but then the whole point of special relativity goes out the
window.

(b) modify one or more principles of Newtonian mechanics.

One might perhaps think that the way to fix up the problem would be to relax the
assumption M = 2m. But it is clear that this alone cannot work, since we would have
to postulate M/2m = (1 − v2/c2)/(1 − (uv)2/c4),which depends on the velocity of O’,
and hence would violate Lorentz invariance. Another way of saying this is to note that
we can certainly do collision experiments in which the outgoing particles are the same
as the ingoing ones, so that there can be no question of mass change: generalizing the
above argument to this case, then two observers O and O′, moving with a velocity u
with respect to one another, who each apply Newton’s second and third laws, will reckon
as follows:

O reckons: Pin =
∑

i

miv
(i)
in =

∑
i

miv
(i)
out ≡ Pout

On the other hand

O′ reckons: P ′in =
∑

i

miv
′(i)
in =

∑
i

mi
(v(i)

in − u)
1 + uvi

(in)/c2
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P ′out =
∑

i

miv
′(i)
out =

∑
i

mi
(v(i)

out − u)
1 + uvi

(out)/c2

and, in general, if Pin = Pout then we cannot simultaneously have P ′in = P ′out, so that it
is impossible for both O and O′ to be right.

Let’s try to sum up the situation. In Newtonian physics, the momentum of a system
is defined as its mass times its velocity, and the combination of N2 and N3 implies that
the total momentum of a closed system on which no external forces act is conserved. This
statement is invariant under Galilean transformation. However, if in accordance with the
precepts of special relativity we replace the Galilean transformation by a Lorentz one,
then the statement is no longer invariant, i.e. if one inertial observer sees momentum
to be conserved then in general others will not. At this stage we have two obvious
alternative strategies:

(a) keep the Newtonian definition of momentum, but accept that N2 and N3 (and
hence the law of conservation of total momentum) are valid only in a particular
frame of reference, or

(b) modify the definition of momentum so that N2 and N3, and hence the conservation
of total momentum, is valid for all inertial observers.

Faced with this dilemma, why do most physicists (at least nowadays) unhesitatingly
plump for (b)? Probably for much the same kind of reasons as special relativity is
almost universally preferred to the “contraction” theories of Lorentz and Fitzgerald:
the ultimate outcome in terms of experimental predictions is exactly the same, but the
theory which results from a full-blooded acceptance of the complete equivalence of all
inertial frames, that is, equivalence for the purposes of mechanics as well as optics, is
so much simpler and (in a sense which is easy to recognize but difficult to define) more
“elegant” than the alternative that there is, in most people’s minds, really no contest.

So it is apparently necessary to change the definition of momentum, if Newton’s
second and third laws are to continue to hold.

Some clues:

(1) The definition should reduce to mv for v → 0 (v � c).

(2) Under the action of a constant force (if Newton’s second law is to continue to hold)
p increases indefinitely, but we want u never to reach c. Thus the relation between
p and u should be such that p =∞ for v = c.

A possible conjecture is:
p =

mv√
1− v2/c2

Does this enable us to satisfy simultaneously Newton’s second and third laws, and
Lorentz invariance?
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Suppose we assume that the total momentum, defined in this way, is conserved for
inertial observer O, i.e.

P =
∑

i

mivi√
1− v2

i /c2
= const.

(i.e. unchanged when the final values of vi, are substituted for the initial ones)
What then is the conclusion of the inertial observer O′ who moves with the velocity

(say) u relative to O? He will see a total momentum given by

P ′ =
∑

i

miv
′
i√

1− v′i
2/c2

But according to the relativistic law of addition of velocities,

v′i =
vi − u

(1− uv/c2)

and therefore

P ′ =
∑

i

mi

(vi − u)/(1− uvi/c2)√
1− (vi−u)2/c2)

(1−uvi/c2)2


and after a bit of algebra (see appendix) this becomes:

P ′ =
∑

i

mi(vi − u)√
1− v2

i /c2
× 1√

1− u2/c2

≡ 1√
1− u2/c2

∑
i

mivi√
1− v2

i /c2
− u/c2√

1− u2/c2

∑
i

mic
2√

1− v2
i /c2

← (c2 added for convencience!)

Now, the first term is simply (1 − u2/c2)−1/2 × P , so if P is conserved so is this term.
So we see that if the conservation of P is to imply that of P ′ we must have∑

i

mic
2√

1− v2
i /c2

= const. (∗)

in any collision process in a closed system of particles.
What is the significance of this statement? Let’s assume all velocities are � c, and

expand: ∑
i

mic
2(1 +

1
2
v2
i /c2 + . . . o(v4)) = const.

Now the first term is just c2 ×
∑

i mi, which we know is unchanged in the collision
since the same elementary particles enter and leave (in the case considered). The next
term, 1

2

∑
i miv

2
i , is the nonrelativistic kinetic energy, which in nonrelativistic mechanics
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we know to be conserved for a closed system. Thus, it seems reasonable to regard the
expression

mc2√
1− v2/c2

as the appropriate generalization of the expression for the (non-potential) energy in
relativistic mechanics. However, it is unclear so far whether or not the zeroth order
term, mc2, is to be taken seriously. One advantage of doing so is that we can then write
the expression for P ′ in the form

P ′ =
P − uE/c2√

1− u2/c2

and it also turns out (not proved!) that we also have

E′ =
E − uP√
1− u2/c2

so that under a Lorentz transformation P and E transform (rather) like x and t. Thus
(part of) what is seen as the effects of conservation of momentum in one frame can look
like that of conservation of energy in another and vice versa.

A prima facie difficulty: what happens in a situation where, because of some external
agency, E is conserved but P is not? (e.g. a ball bouncing against a “fixed” wall,
cf. lecture 8). Answer: In general, in a different Lorentz frame neither E nor P will be
conserved! (The moving wall can transfer energy as well as momentum.) (Note: This
consideration is common to relativistic and Newtonian mechanics, cf. Lecture 7.)

However, this “neat” result does not establish that we should really count the mc2 as
part of the total energy. To determine whether we should or not, we need to go back to a
case where total mass is not obviously conserved, e.g. the disintegrating particle discussed
earlier. We note that the argument that Lorentz invariance requires the conservation of
the expression marked (∗) goes through unchanged for this case, and thus we have for
any inertial observer the statement∑

i

mic
2√

1− v2
i /c2

= const.

in any disintegration/collision process. Let’s then apply this result in the frame of an
observer at rest with respect to the original (about-to-disintegrate) particle of mass M .
Assuming that the two decay products have each mass m, and that their velocities are
equal and opposite (conservation of momentum!) we then have

Mc2 =
2mc2√

1− v2/c2

or:
M =

2m√
1− v2/c2

( 6= 2m!)
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Thus, the mass of the original (unstable) particle is greater than that of the decay
products: part of the original mass is turned into kinetic energy of the decay products
(which will, of course, be lost when e.g. the latter are slowed to rest in a medium).
Mass as such is not conserved: total energy, including the rest energy mc2, is! The
crucial point is that this is an experimentally measurable effect ! The ”mass” is simply
the inertial mass, and this is measured by resistance to acceleration. This effect is very
small (typically ∼ 10−9) for a typical chemical reaction, but may be a good deal more
substantial for e.g. the fission of uranium (v/c here ∼ 1/30, so the mass changes by a
factor ∼ 10−3 of 200 GeV ∼ 200 MeV/disintegration).

To summarize the conclusions reached in this lecture: Once we have decided that
the proper way to relate the space and time coordinates measured by different inertial
observers is through the Lorentz rather than the Galilean transformation, then there
is no way of maintaining the invariance of the law of conservation of total momentum,
so long as momentum is simply defined as mass × velocity(mv). We can maintain the
invariance by redefining

P = mv/
√

1− v2/c2

but only if we assume that the sum of the quantities mc2/
√

1− v2/c2 is conserved. In
particular, for a single particle decaying into two this implies that the sum of the masses
of the decay products is in general less than that of the original particle, i.e. the total
mass of the system (as conventionally defined) is not conserved. Rather, it is the total
energy, defined as the sum of the quantities mc2/

√
1− v2/c2 which is conserved. In the

limit v → 0 this is expressed, of course, in the famous relation E = mc2.
It is somewhat ironical that the special theory of relativity is so often regarded as

the beginning of “modern physics”; as remarked by Hesse, in many ways it is more
natural to regard it as the culmination of classical physics, that is as the final unification
of the mechanics of Newton and the electromagnetic, theory of Maxwell. Once special
relativity is in place, classical physics stands as a self-consistent whole, which “could
have” been the Final Theory of the universe. As we shall see, it was not to be . . .

Appendix: Algebra for the transformation of momentum

The total momentum P ′ as seen by inertial observer O′ is given by the expansion

P ′ =
∑

i

mi(vi − u)/(1− uvi/c2)√
1− (vi−u)2/c2

(1−uvi/c2)2

Consider the expansion

Ji ≡
(vi − u)/(1− uvi/c2)√

1− (vi−u)2/c2

(1−uvi/c2)2

Multiply the numerator and denominator by 1− uvi/c2:

Ji =
vi − u√

1− uvi/c2)2 − (vi − u)2/c2
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=
vi − u√

1− 2uvi/c2 + u2v2
i /c4 − v2

i /c2 + 2uvi/c2 − u2/c2

=
vi − u√

1 + u2v2
i /c4 − v2

i /c2 − u2/c2

=
vi − u√

(1− u2/c2)(1− v2
i /c2)

≡ vi − u√
1− v2

i /c2
× 1√

1− u2/c2

Thus,

P ′ ≡
∑

i

miJi =
1√

1− u2/c2
·
∑

i

mi(vi − u)√
1− v2

i /c2

as stated in the text.


