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The advantages of ignorance: statistical mechan-

ics

With the exception of a few “asides” (about Brownian motion and so on), just
about everything we have discussed in this course so far has rested on the implicit
assumption that we have complete information about the system(s) to which we are
about to apply the relevant physical laws, or at least complete information for the
purposes at hand. For example, when applying Newton’s laws to the motion of the
planets, we assume that we know, or can find out, to any desired degree of accuracy,
their current positions and velocities (and can later re-measure these quantities to
check our predictions). Of course there is great deal about the planets we may
not know (and certainly Newton did not know) e.g. their chemical compositions,
whether they are inhabited by intelligent beings and so forth; however, this does
not matter, because we believe that these unknowns are irrelevant to a prediction
of the motion of the planets in the gravitational field of the sun. Similarly, in
dealing á la Galileo with the motion of, say, a cannon-ball here on earth we do
not need to know the detailed configuration of each of the atoms composing it
(indeed, even gross properties such as chemical composition and overall shape are
relevant only to the extent that they influence the effects of air resistance, etc.)
Again, in the discussion of special and general relativity, it was only certain very
general properties of “events” which played a role: phenomena such as the Doppler
effect and the gravitational redshift are completely independent of the detailed
nature of the source emitting the radiation! Where we come to QM, the question
of “complete information” takes on a rather different aspect: according to the
usual interpretation of the theory, the most complete information we shall ever in
able to get about the individual system is encapsulated in the state vector (wave
function) of the ensemble from which that system is drawn. Unlike the case of
classical physics, this “complete” information does not permit the prediction with
certainty of the outcome of arbitrary subsequent measurements we may make on
the system, but within the usual framework it is nevertheless the best we will ever
be able to do, even in principle. In discussing the quantum theory we have almost
always assumed, explicitly or otherwise, that we do in fact possess a knowledge of
the state vector of an appropriate ensemble from which the system can be regarded
as drawn. (E.g., in the Schrödinger Cat thought-experiment as we presented it,
we assumed that the “triggering” electron is drawn from an ensemble collimated,
monochromated etc. in a given way). Thus there is, as it were, nothing further
for us to be ignorant of.

In most real-life applications of physics, however, “complete” information, ei-
ther classical or QM’l, is the exception and a certain amount of ignorance is the
norm. Let us for example consider a tray of water in the refrigerator and ask how
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long it will take to freeze. Without any detailed theory of freezing, we know at
least that the water is composed of a very great number of H2O molecules, and one
would certainly imagine that the time in question might depend rather strongly on
their initial state. But we certainly do not know this state in detail: if we describe
them classically, we do not know the position and velocity of each molecule, which
is what is necessary for a complete specification of the initial conditions, and if
we describe them (as we in principle should) by QM, we equally certainly do not
know the appropriate state vector. In the context of this last remark, it should
be emphasized that in applying QM to real-life systems we are faced with, as it
were, two kinds of uncertainty. One, which we have already discussed in detail,
is associated with the very nature of QM, and in particular with its characteristic
“indeterminacy”: even if we have the most complete information we are ever al-
lowed to get, in the form of knowledge of the state vector of the relevant ensemble,
we still cannot necessarily predict with certainty the outcome of all measurements.
The second kind of uncertainty is as it were much more everyday: we simply may
not, in practice, know enough about the system in question to be able to assign it
reliably to a unique ensemble. In this case, all we can do is to state that with some
probability Pi it comes from an ensemble of type i and therefore has a state vector
|Ψi〉 (For example, we might have a photon which could have come from either of
two beams, one of which has passed through a horizontal polarizer and the other
through a vertical polarizer: in this case all we can say is that the photon either
has polarization | ↑〉 or polarization | →〉, with probability 1/2 each. This should
be carefully distinguished from the quite different statement that the photon has a
linear combination of the two polarizations, i.e. is described by the superposition
state 1√

2
(| ↑〉 + | →〉) ≡ | ↗〉 This type of “ignorance” is not really in any way

peculiar to QM and has no spectacular (interference-type) effects.
In the first half of the nineteenth century, the science of thermodynamics was

developed in order to deal phenomenologically with situations, in particular in-
volving macroscopic bodies, where we do not have all the “relevant” information.
Later, it was shown how to relate the concepts of thermodynamics to a more
first-principles, “microscopic” picture: the resulting branch of physics is known as
statistical mechanics. In this lecture I shall first review classical thermodynamics
and then its statistical mechanical underpinnings.

In the course of this exploration we shall run across one very striking difference
between thermodynamics and the other branches of physics we have looked at so
far. Namely, while classical mechanics, special and general relativity and even QM
(more on this later) are indifferent with respect to interchange of the past and the
future, thermodynamics seems to require and impose a definite sense of the “arrow
of time” – there really is a difference between the past and the future! We will
explore the basis for this difference in the next lecture.
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The experience of hot and cold is perhaps one of the most basic known to
mankind. With a little more sophistication, we form the concept of “equally
hot”, and eventually realize, perhaps with a little conscious experimentation, that
two bodies put in contact but otherwise effectively isolated from the rest of the
world (e.g. the tea and the teapot, given that it is covered with a cozy!) end up
being “equally hot”. Rather than simply define “equally hot” on the basis of our
immediate perceptions (which could be rather dangerous, the tea may actually
feel hotter than the teapot) we can define two bodies as equally hot, if when they
are put in contact, neither gets any hotter or cooler. Being “equally hot” is what
logicians call a transitive relation: if A is as hot as B, and B as hot as C, then
A is as hot as C; this can be regarded as an experimental fact and is sometimes
called the “zeroth law of thermodynamics”. We can now say that any two bodies
which are equally hot possess the same value of some “physical” quantity which
is conventionally called the temperature and denoted T . Note that at the present
stage this is just an abstract definition, and we have no idea how T is related to
the other, e.g. mechanical, properties of the body in question. Obviously, how we
actually assign a numerical value to T is somewhat arbitrary; we have possibilities
ranging from the degree of discomfort felt by our fingers to the height of column
of mercury to the volume of a constant-pressure gas thermometer. We will see
later that statistical mechanics provides a possible unique, if somewhat abstract,
definition. For the moment it will be enough that higher values of T correspond
to our intuitive notion of “hotter”.

How does a body become “hotter” or “colder”? The most obvious way is
by being put in contact with another body which is at a given temperature and
transferring “heat” (as we would say in everyday life) to it. At first sight, this
looks very similar to the way in which, when we put a positively charged body in
contact with a negatively charged one, electric charge flows between them. It is
therefore at first sight tempting to regard ’heat” as like electric charge, that is, as
a substance of which a body possesses a certain amount, so that the total amount
of “heat” is conserved. This view was popular in the eighteenth century, and
the substance in question was known as “caloric”. However, it had been known
qualitatively for a long time, and was verified quantitatively in a famous (cannon
boring) experiment by Count Rumford in 1796, that it is possible to raise the
temperature of a thermally isolated body by doing mechanical work on it. Thus,
if “caloric” exists at all, it is certainly not conserved! In fact, a given amount of
mechanical work is always equivalent to the same amount of heat, irrespective of
the nature of the substance. A (thought!) - experiment to demonstrate this might
go as follows: Suppose that when a given quantity of water at say 20◦C and of
brass at 50◦C are put in thermal contact, they eventually come into equilibrium
(i.e. become “equally hot”) at 30◦C. By definition, the amount of “heat” lost by the
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brass is equal to that gained by the water. Thus it will require an equal amount of
mechanical work (under ideal conditions, of course!) to re-heat the brass to 50◦C
and to re-heat the water to 30◦C after it has been re-cooled to 20◦C. Thus, heat and
mechanical work are nothing but different forms of the same commodity-energy!
The only problem is that, because of the history, they are conventionally measured
in different units: work is measured in joules, but heat in calories, one calorie being
the heat require to raise the temperature of 1 gram of water by 1 degree, under
specified conditions. The equivalence is: 4.2 joules equals one calorie. (In every
day terms this ratio is enormous, as anyone knows who has spent a night at an
Alpine hut above the snow line and tried to use mechanical work to convert snow
into drinking water!)

The equivalence of heat and mechanical work as different forms of energy, plus
the general principle (which we tend to believe on rather general grounds) that total
energy is conserved, constitute what is known as the first law of thermodynamics:
crudely speaking “work + heat = constant”, E.g. if we imagine that we carry a
thermodynamic system (such as the freon in a household refrigerator) around a
cycle of operations, returning it at the end to its original state so that its total
energy is unchanged, then we know that the total heat input to the system over
the cycle must be equal to the mechanical work output (e.g. in the expansion
and compression of the gas); however, each of these quantities can be individually
finite (and must be if the refrigerator is to work!)

Nothing so far explains why heat tends to flow from a hotter to a cooler body
but not vice versa. Evidently, it would be nice if on a cold winter’s day we could
simply pull in energy, in the form of heat, from the outside air and use it to heat the
house! In fact, nothing in the first law of thermodynamics forbids us doing so, and
modern “heat pumps” do achieve this end. However, to do so they have to perform
mechanical work; if no such device is involved, we know very well that not only can
we not do this, but in fact the reverse will happen (the house, without continuous
input of heat from the furnace, will eventually cool to the temperature of the
outside air). Reflections on these and similar ”impossibilities” led Carnot, Clausius
and others in the early 19th century to arrive, by a series of very elegant arguments,
at the concept of entropy and the related second law of thermodynamics. The idea
is that in thermal equilibrium under specified conditions (given temperature, given
pressure etc.) any physical system will possess not only a definite total energy but
also a definite value of another quantity, called “entropy” and usually denoted
S∗. Although the “total amount of heat” possessed by the body is a meaningless
concept (since heat alone is not conserved) the heat input ∆Q (which is well-
defined) can be related to the change ∆S of the entropy: If the input is gradually

∗Like the energy (but unlike e.g. the temperature) entropy is an “extensive” quantity, i.e. half
the body has half the entropy (but not, of course, half the temperature!).
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done while the body is at a given temperature T and “nothing else” happens to
the system (e.g. no cannon-boring, etc.) then the relation is ∆S = ∆Q/T . The
second law of thermodynamics can be expressed in various forms which tum out to
be equivalent: in the present context it is convenient to express it by the statement
that for a thermally isolated system or set of systems (i.e. such that there is no
external heat input) the entropy can only increase or, at best, remain constant:
∆Stot ≥ 0. It is immediate to see how this principle ensures that the transfer
of heat will be from the hotter body to the cooler and not vice versa (assuming
that no third body is involved, as will be the case if a heat pump is applied).
Suppose bodies 1 and 2 are initially at temperature T1and T2 respectively, and
are put into thermal contact while thermally isolated from the rest of the world
(e.g. tea and teapot). Let ∆Q the heat lost by body 1 and therefore gained by
body 2; for the moment we allow ∆Q to have either sign. From the above we have
∆S1 = −∆Q/T , ∆S2 = +∆Q/T2, and hence the total entropy change of the two
bodies combined is ∆Stot = ∆Q(1/T2−1/T1). But the second law says ∆Stot must
be ≥ 0. Since by construction T1 > T2 and hence 1/T2 > 1/T1, it follows that ∆Q
must be positive, i.e. the heat flows for the hotter to the colder body.

In the above we said “the entropy must increase” (or at best stay constant).
Let’s make this more explicit. “The later the time, the larger the entropy must
be.” Thus, the second law (unlike the first) picks out certain times as “later” than
others, i.e. it defines an arrow of time. Processes which involve zero change in
total entropy are called reversible, others irreversible. Thus, as the names imply, a
reversible process can “go” in either direction (the statement “remains constant”
does not distinguish past from future!) but an irreversible thermodynamic process
can proceed only in one direction. Most of the physical processes we observe in
everyday life are irreversible, which is why we can usually tell when the movie is
being run backwards!

Once we have the definition of entropy and the first and second laws, we can
derive a large number of results which are quite independent of the detailed nature
of the bodies under consideration (e.g. we can relate the compressibility, thermal
expansion and specific heat). If further we know the way in which the energy
and entropy depend on other “thermodynamic” variables such as temperature,
pressure etc. we can do quantitative calculations and start building useful things
such as internal combustion engines, refrigerators etc. This is the subject-matter
of classical thermodynamics.

It is important to note that to do classical thermodynamics all we need to
know are a few macroscopic (and relatively easily measurable) properties of the
system (e.g. pressure, volume, temperature). The subject is therefore completely
self-contained one, and indeed in the late nineteenth century there were plenty of
people (including Mach, whom we have met before) who argued that there was
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simply no need for any more microscopic basis for it. However, the majority of
physicists felt a certain discontent; while the first law could perhaps be understood
at least qualitatively if we identify the part of the energy called “heat” with random
motion of individual atoms/molecules which is on too small a scale to manifest
itself as macroscopic work, it remained a mystery why the second law holds and
in particular what is the nature of the mysterious “entropy”. This discontent
was (largely) removed with the development of statistical mechanics, to which I
now turn. I will frame the discussion primarily in terms of classical statistical
mechanics, i.e. a theory which assumes that the dynamics of individual atoms
obeys Newton’s rather than Schrödingers’ equation, and bring in the quantum
version only when it actually simplifies things.

To illustrate the basic ideas of statistical mechanics, let’s start with a specific
example. Imagine that we have a very large lattice (N points) with one small
magnet (“spin”) on each site which can point only “up” or “down”. (This is
actually not a bad model of certain kinds of magnetic material). A point which
is very crucial in our argument is that it is very unlikely that we shall be able to
know the direction of each individual magnet, in fact it is obviously impossible to
find this by any macroscopic measurement. On the other hand, it may be quite
easy to find out the total magnetization M of the sample (i.e. the number of “up”
spins (magnets) minus the number of “down” spins), e.g. from the magnetic field
produced by it; it should also not be too difficult to find the total magnetization
of “sufficiently large” parts of the system. For definiteness let’s divide the system
into two equal halves; we then assume we can measure M , and also M1 and M2,
the magnetizations of the two halves, separately. Furthermore let’s assume, for
simplicity, that the total energy is a unique function of M and that the system is
thermally isolated, so that its energy is fixed at a particular value; then M must
also have some fixed value, which for simplicity we choose to be zero. The question
is: Given this information, what behavior do we predict for the “macroscopically
observable” quantities M1 and M2 (= −M1)?

It is clear that, since by hypothesis we are not allowed to know the behavior
of individual spins, any predictions we can make must be based on probabilistic
considerations. How can we apply probability theory to this problem? We must
first decide how to assign an a priori probability to each of the 2N possible config-
urations of the N spins, or actually more precisely to that subset of them which
corresponds to M = 0. (since we already have this piece of information). At this
point we remark that there is nothing which distinguishes anyone configuration
physically from any other†, and then use the Principle of Indifference to argue
that therefore it is legitimate to assign exactly the some a priori probability to

†In a more realistic model the energy is very likely to be different for different configurations,
but we have got rid of this complication by our assumption that E is a unique function of M .
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each. Once we have made this crucial assumption, the rest of the calculation is in
principle straightforward: it is clear that the probability of obtaining a given value
of M1) (and hence the opposite value of M2) is simply the number of different
configurations with M = 0 which give this value of M1 In fact it is clear that the
problem is exactly the same as the following one: given that in a long series of
coin tosses the total number of heads and tails is equal what is the probability
of getting M1) more heads than tails on the first half of the sequence? (heads
⇒ spin up, tails ⇒ spin down). Without detailed calculation we can see what
the qualitative behavior will be (cf. lecture 18): First, consider the probability
of the “extreme” result that M1 is simply N/2. For this to be so, all the spins
on side 1 must be up, and there is only one configuration corresponding to this
arrangement. What about the case M1 = N/2 − 1? Now there are N/2 possible
configurations, corresponding to the different possible choices for the single “down”
spin on side 1. (Similarly, on side 2 there are N/2 possible choices for the single
“up”). Thus the total number of configurations is (N/2)2. For M1 = N/2−2 there

are
[

1
2

N
2

(
N
2
− 1

)]2
configurations, and so on. It is intuitively plausible (and turns

out to be true) that the most probable value of M1 (and hence also of M2) is zero:
it is somewhat less obvious (but follows from a standard calculation) that the value
of M1 for which the probability falls to 1/2 of the maximum value is of order N1/2.
Thus we would conclude that the most probable value of M1 is zero, and that the
“fluctuations” of M1 around this value, expressed as a fraction of the maximum
possible value N/2, are of order N−1/2 (compare lecture 18). Thus, in the limit
N →∞ (usually called the “thermodynamic limit”) the value of the macroscopic
quantity M1 is predicted to have a perfectly well-defined value (in this case, zero).
Under appropriate circumstances this prediction is experimentally verified.

The method illustrated in the above “toy” problem can be generalized to any
problem involving a system thermally isolated from the outside world. In that case
the energy is fixed, so one considers all those configurations which correspond to the
given value of the energy and asks how many correspond to a particular value of the
other ”thermodynamic” variables (e.g. pressure, voltage. . . ) one is interested in
predicting, and assigns a probability proportional to the number of configurations.
Quite generally, one finds that in the thermodynamic limit (size of system →∞)
the probability peaks very sharply about a particular value‡, with fluctuations of
order N−1/2. Of course, the “counting” of the relevant configurations and hence
the application of the Principle of Indifference may not always be entirely trivial,
and sometimes in the last resort we have to fall back on quantum mechanics to
justify the counting method we believe (essentially on experimental grounds, as
long as we stay with classical physics!) to be correct. But the basic principle is
just that illustrated above.

‡Or, occasionally, two or more different values (the case of so-called “broken symmetry”.)
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Suppose now that we have actually measured the value of M1 and found that
it is not the “most probable” value zero, but (say) is of order N/2. We would be a
little surprised, but might account for this result by, for example, the assumption
that our colleague had applied a magnetic field to side 1 (and an opposite one to
side 2) so as to orient the spins, and then turned it off just before we walked into
the room to do the measurement (cf. next lecture). We now suppose that we leave
the system to itself, and that the microscopic dynamics is such that the spins can
“flip-flop”, that is, exchange spin while conserving the total spin of the sample
(and hence, according to our model, the total energy: this is a not unreasonable
model for the dynamics of many magnetic systems). These “flip-flops” can recur
not only within regions 1 and 2, but also across the 1-2 boundary, in which case
they will obviously change M1. Under these circumstances, how do we expect the
quantity M1 to evolve in time?

Strictly speaking, the only totally rigorous answer to this question would be an
explicit calculation, either by hand or (more likely, in 2010) by computer. For such
a calculation we would need as input the exact dynamics, e.g. the probability of a
flip-flop transition of each pair of opposite spins in the sample etc. Furthermore,
we would need to do the calculations separately for each of the different states
which could have given rise to the initially observed nonzero value of M1, which
unless this value is very close to N/2 will be extremely numerous. However, most
physicists would probably have a very strong prejudice that unless the dynamics,
and/or the initial state, is “pathological”, the system would eventually approach
the value of M1 (in this case zero) which was indicated by the original calculation
based on “complete ignorance”, and then stay there. In many relevant cases that
does seem to be the behavior which is observed experimentally.

Thus, at least so long as our system is thermally isolated, there seems to be
a characteristic of the macroscopic state (defined by the value of M1 and nothing
else) which is a maximum when we have no information about the system at all
and which, when we start from a state not corresponding to the maximum, tends
to approach the state which does, i.e. to increase. This quantity is the number
of configurations which correspond to that value of M1. Now the (macroscopic)
second law of thermodynamics tells us that the entropy S tends, for a thermally
isolated system, to increase and thus to reach its maximum value. It therefore
becomes plausible to associate the thermodynamic concept, entropy (S), with the
statistical concept of the number of “available” configurations (W ), and in fact this
association lies at the heart of the discipline now known as statistical mechanics.
However, it is clear that the entropy cannot be simply proportional to W , if for
no other reason than that when the system is doubled in size without changing
e.g. the mean magnetization, the entropy is doubled (see above) while the number
of available configurations is (approximately) squared. In fact the only law of
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association which will get this feature right is to make S proportional to the
logarithm of W :

S = kB ln W

(i.e. in our toy model S(M1) = kB ln W (M1)). The constant kB is necessary because
S has the units of energy/temperature (∆S = ∆Q/T !): it turns out to have the
numerical value of 1.38× 10−23 J/K, and is known as Boltzmann’s constant.

Once we have the above “statistical-mechanical” definition of entropy, it is
relatively straightforward to derive the general formal results quoted in textbooks
of statistical mechanics; if we know enough about the dynamics of a specific system
etc., we may also actually be able to calculate the entropy as a function of energy,
magnetization etc ., for this system. One important generalization should be noted:
we often want, in real life, to consider systems which are not thermally isolated
but are in contact with some thermal “bath” (i.e. a very large environment, such
as the earth’s atmosphere, such that the effects of the system on it are negligible).
In general what tends to be specified is not the energy of the bath (which it can
continually exchange with the system, under these “thermal contact” conditions)
but rather its “temperature”, and so we need to know how temperature is to
be defined in a statistical-mechanical approach. It turns out that if we define a
quantity T by

T =
1

∆S/∆E

the quantity so defined has all the properties expected of the thermodynamic “tem-
perature “, and all the generic results obtained from statistical mechanics can be
put into exact one-one correspondence with those of thermodynamics. Whether
this means that thermodynamics is “equivalent” to statistical mechanics is a ques-
tion beloved of philosophers of science, cf. e.g. Sklar pp. 106-8.

One point about the above discussion of entropy cannot be over-emphasized:
it makes no sense to talk about the entropy of a system if its exact microscopic
state is known. “Entropy” is an essentially macroscopic concept, and is defined
for a system when we have, at best, knowledge of a few macroscopic quantities,
e.g. in the above toy model, the entropy S(M1) is a property of the macroscopic
state characterized by a particular value of M1 (as we saw, it is essentially the
logarithm of the number of micro-states which correspond to this value).

What I have outlined above is essentially what is usually called the “infor-
mation theoretic” approach to entropy; it clearly fits in well with (and could be
regarded as a special case of) the “subjectivist” approach to probability in general.
There exists another . approach, usually called the “ergodic” approach, which can
be regarded as in some sense a special case of the “objectivist” or “frequentist”
approach to probability. It is based on the so-called ergodic hypothesis, and closely
related hypotheses such as mixing, K-system behavior etc.; crudely speaking, in
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the present context we can define these as stating that a system with a given fixed
energy will in time explore all configurations available to it which are consistent
with that constraint and moreover spend equal time in each.Needless to say, this
relies as above on having a correct count of the different configurations.

If true, the ergodic hypothesis would do two things for us. First, since the
probability of us observing a given microstate is presumably proportional, under
normal conditions, to the time the system spends in it, it would justify the use of
the Principle of Indifference used in the information-theoretic approach. Secondly,
it would justify our “prejudice” that the system, when started from a nonequilib-
rium macrostates, would eventually attain the equilibrium one, since in effect it
starts from one of a very small set of configurations (that corresponding to the orig-
inal nonzero value of M1) and ends up spending the overwhelming majority of its
time in a much larger set (that corresponding to M1 = 0). The very small fraction
of its time it spends in the long run in the macrostate corresponding to the original
(improbable) value of M, would not in practice be observable experimentally.

Unfortunately, not only has the ergodic hypothesis (and related ones) been
proved only for a very small set of systems, it has actually been disproved for a
considerably larger class. The most common reason for its failure, in real life, is
the existence of some conservation law or laws different from that of conservation
of energy. To take a trivial case, it is clear that if in our toy model we forbid “cross-
boundary” flip-flops, thereby conserving M1 and M2 separately, no relaxation to
equilibrium can occur. In response to this consideration one might perhaps object
that no conservation law is ever completely exact, and that therefore it is only a
matter of how long we are prepared to wait. However, a more surprising result
which has come out of the (very sophisticated) work of the last few decades in
nonlinear mechanics is that .in many systems, despite the absence of any particular
conservation law for macroscopic quantities (other than the energy, of course), .
there are often nevertheless classes of configurations which never “communicate”
with one another, i.e. if we start in one class the dynamics will never take us into
the other class, in contradiction to the ergodic hypothesis. This result, stated in
more quantitative terms, is the famous KAM theorem; for a further discussion see
Sklar, pp. 125-7.

By and large most practicing physicists (as distinct from many mathematicians
and philosophers of science!) do not worry over much about the KAM theorem and
related disproofs of the ergodic hypothesis, probably because they are conscious
that the idealized dynamics used in the proofs are themselves unlikely to corre-
spond exactly to any real-life system. Most physicists in fact probably rather tend
to assume that in the absence of macroscopic conservation laws (which there are
standard techniques for taking into account) the ergodic hypothesis is true FAPP
- “for all practical purposes”. It is unclear whether this spirit of nonchalance will
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some day let us down. . . .


