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Symmetry Principles and Conservation Laws

Newtonian physics is characterized by the existence of various conservation laws, that is,
principles which tell us that however complicated the interactions between the compo-
nents making up the system, certain quantities never change. Perhaps the most familiar
such law is the conservation of the total mass of the system, or “amount of matter”
in it: as described in Feynman, §3, we believe that in principle we can always account
for all the mass – if it has disappeared from one point, it must turn up somewhere else.
Other important conservation laws which operate under appropriate conditions are these
for the total energy, momentum and angular momentum (on which see below). Also we
sometimes find conservation laws for non-mechanical quantities, such as the total electric
charge.

An important aspect of conservation laws (or at least the ones for mechanical quanti-
ties) which gradually emerged in the nineteenth century is that, generally speaking, they
are associated with some symmetry or invariance property of the physical situation (this
is explained below). This connection between symmetry properties and conservation laws
is, in classical physics, common to “particle” and “wave” phenomena; moreover it has
survived the violent conceptual upheavals of relativity and quantum mechanics, and I
imagine most physicists would guess that it would survive possible future upheavals.
It is interesting that the idea that (for example) all positions in space are in principle
equivalent, and this equivalence leads to interesting physical consequences, is perhaps
one of the most radical ways in which post-Newtonian physics breaks with Aristotle (for
whom, we recall, everything had its unique “proper place”).

Let’s start with the idea of symmetry (or invariance). Consider for example an
experiment done using billiard balls on a smooth table. It is clear that the progress and
outcome of the experiment does not depend, first of all, on the time at which we do
it: in simple mechanics, all times are equivalent. It does not depend, either, on where
we do it (assuming the billiard table is if necessary shifted appropriately); all positions
(on the earth’s surface) are equivalent. Also, it doesn’t depend on the direction on the
surface of the earth (again, provided we rotate the table appropriately). We would like
to express these obvious intuitive ideas, and extensions of them, a bit more precisely.

To describe a physical experiment we need to be able to specify, in the form of
numbers, the times and places at which different events took place.∗ In the case of time,
this means that we must specify (a) the “origin” from which we are reckoning time, and
(b) the unit of time. In most industrialized countries nowadays, the unit of time is the
second, minute or hour, and the “origin” of time is local midnight; thus 8:47 a.m. is
the time which is 8 hours and 47 minutes after midnight, which (at least originally!) is
approximately the middle of the night at the location in question. In the case of the
∗This paragraph essentially repeats, for convenience, some considerations already discussed in lec-

ture 7.
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mechanics of space coordinates, things are a little more complicated, because in addition
to the origin and the unit of distance one must specify the orientation of the grid. As an
example, in Urbana we might take our origin as the intersection of Race and University
streets, and the unit of distance as the meter (or foot). But we would still have to
specify the choice of direction of the axes along which we measure. The conventional
choice in such cases is to choose one axis vertical (i.e. parallel to the local gravitational
field) and the others to be N–S and E–W. Note that it is usually assumed without
explicit comment that we take our three axes to be mutually perpendicular. Thus, we
can specify the “spacetime location” of any event by four coordinates (t, x, y, z). For
example, an event whose coordinates are (5194, -470, -1200, 20) would take place at
5194 seconds after midnight at a location 470m south and 1200m west of the University-
Race intersection (i.e. roughly at the position of Loomis Lab) at 20m above the surface
of the earth.†

Once we have defined our coordinate system, we can start formulating the laws of
mechanics and applying them to specific experiments. For example, one of the simplest
such laws is N1, which states that a body on which no forces act remains at rest or
moving with uniform velocity. On the surface of the earth we should, of course, apply
this only to the horizontal motion, so let’s assume the vertical coordinate z is fixed
(e.g. by considering a billiard ball moving on the surface of a billiard table). Then we are
describing a chain of “events” j corresponding to “presence of the billiard ball” which are
characterized by space-time coordinates (tj , xj , yj), and the interesting question for most
purposes is how the space coordinates xj and yj are related to the time coordinates tj of
these events. In the limit where the tj are very closely spaced this information amounts
to giving the trajectory x(t), y(t) of the billiard ball. Clearly in the case considered (free
motion) this is of the form:

x(t) = xi + vx(t− ti), y(t) = yi + vy(t− ti) (∗)

where i stands for “initial”. We do not know ahead of time the values of the constants
ti, xi, yi, vx, vy (i.e. when, where, how fast, and in what direction the motion in question
took place); however we do know that every horizontal motion which is genuinely force-
free must be expressible in the above form.

Now let’s assume that we decide to change our choice of space-time coordinate sys-
tem. As a result, the numbers which describe a given event will in general change: call
the new numbers t′, x′, y′, z′. For example, if we were to decide to change our “origin of
time” to 1 a.m. and our origin of space coordinates to Goodwin and University, without
changing the units or the “NSEW” grid orientation, then the event mentioned above
would have new coordinates t′ = 1594, x′ = −470, y′ = 0, z′ = 20. In general, we can
express the new coordinates in terms of the old ones; for all the kinds of coordinate
†There is obviously a slight approximation made here in that it is implicitly assumed that the surface

of the earth in Champaign-Urbana is exactly flat.
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change considered below the relation is linear, e.g. x′ = αx + βy (not e.g. x′ = γx2).‡

Here are some examples of possible changes:

1). Shift of the “origin” of time (e.g. reckoning from 1:00 a.m. rather than midnight).
This is sometimes called “time translation”. The formal expression of such a
transformation is:

t′ = t− t0, x′ = x, y′ = y, z′ = z

where t0 is the new origin expressed in the old coordinates (in the example con-
sidered, t0 = 3600).

2). Shift of the origin of the space coordinate system (“space translation”). If the new
origin expressed in the old coordinate system is (x0, y0, z0) (e.g, for the example
considered (0, - 1200, 0) then the formal transformation is

t′ = t, x′ = x− x0, y′ = y − y0, z′ = z − z0

3). Rotation of the space coordinate system. We may consider without loss of gener-
ality the case of a rotation around the existing origin (since for a rotation around
an arbitrary point, it is always possible to make the latter the origin by a trans-
formation of type 2). For simplicity we will consider here only a special example,
namely rotation in the xy-plane through 45◦. In this case the transformation may
be verified by a little trigonometry to be of the form

x′ =
1√
2

(x− y), y′ =
1√
2

(x+ y)

x

y

x' y'

‡It is, of course, possible to consider more complicated (nonlinear) modifications, but in the present
context these are not particularly relevant.
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In the more general case of an arbitrary 3D rotation we have x′ = αx + βy + γz,
etc., where α, β, γ are coefficients which depend on the axis and angle of the
rotation.

4). Time reversal. This simply consists in reckoning time backwards, so that

t′ = −t, x′ = x, y′ = y, z′ = z

5). Space inversion. This corresponds to reversing the signs of all the space coordinates

x′ = −x, y′ = −y, z′ = −z

Note that if we were to consider only a two-dimensional system, e.g. forget alto-
gether about the z-axis, then inversion is exactly the same as a rotation through
180◦. In 3 dimensions, however, this is no longer true: inversion changes a right-
handed glove into a left-handed one! Note also that a transformation which changes
the sign of 1 space coordinate only is equivalent to a 180◦ rotation plus an inver-
sion, while as just noted one which changes the sign of 2 out of 3 is equivalent to
a rotation.

6). Change of unit of time (new unit is α in terms of old one)

t′ = t/α, x′ = x etc.

7). Change of unit of distance (new unit is β in terms of old one)

t′ = t, x′ = x/β, y′ = y/β, z′ = z/β

(It is of course also possible to adopt different units for the 3 axes, but this is of
no great interest in the present context).

8). Galilean transformation. For definiteness we assume that the new frame is moving
with respect to the old one along the x-axis (this can always be ensured by a
suitable operation of type 3), with velocity v. Then, as already noted in earlier
lectures, we have

x′ = x− vt, y′ = y, z′ = z, t′ = t

Note that this is the only one of the transformations considered which “mixes” the
space and time coordinates.

In the above we assumed that we wished to describe the same event by two different
coordinate systems. An alternative approach is to consider two different events described
in the same coordinate systems, the two events in question being related by operations
corresponding to 1) – 8) above. E.g. in the case of operation 1, we could consider an
event which is identical in nature to our original one, but now occurs at 12:25 a.m., rather
than 1:25. As regards arguments concerning commutation, conservation laws etc., this
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so-called “active” picture is entirely equivalent to the “passive” one used above, and
which to use is just a matter of taste and convenience.

An important point to notice is that not all of the above operations “commute” with
one another. Two operations are said to “commute” (with one another) if the final result
is independent of the order in which they are performed. For example, the operations of
putting on a left sock and a right shoe commute, but those of putting on a right sock and
a right shoe clearly do not. In the above list it is clear that, for example, the operations
2) and 3) do not in general commute; this is perhaps easier to see using the “active”
picture – e.g. displacing a point through 1m along the x-axis and then carrying it through
45◦ around the origin does not in general give the same result as first carrying it through
45◦ around the origin and then displacing it! A very important case is that while two
rotations around the same axis commute, rotations around different axes in general do
not. (You can easily verify this by taking an asymmetrical 3-dimensional object such as
a textbook and rotating it (a) first through 90◦ around a vertical axes and then through
90◦ about a particular horizontal one, and (b) vice versa. It is immediately clear that the
final orientation of the book achieved by process (a) is not the same as that in process
(b)!)

An interesting question, for any given physical system, is now: Under which of the
above transformations is the form of the governing laws invariant? Let’s consider, as an
example, the specially simple case of free 2D motion on the surface of the earth. We
found earlier that in the old coordinate system the most general form of allowed motion
was

x(t) = xi + vx(t− ti), y(t) = yi + vy(t− ti) (∗∗)

where xi and yi are the x- and y- coordinates at some initial time ti. Recall that the
quantities ti, xi, yi, vx and vy are characteristic of the particular motion considered, but
that the above form of equations is quite general for a body moving under no external
force. Consider now what the particular motion just described would look like in a new
coordinate system related to the old one by operation 1) (shift in the “origin” of time).
For any given value of t, since x′ ≡ x, we have

x′ = xi + vx(t− ti)

and since t′ = t− t0, this can be rewritten

x′ = x′i + vx(t′ + t0 − ti) ≡ x′i + vx(t′ − t′i)

where t′i is just ti − t0 and x′i is identical to xi. Thus, writing x′ explicitly as a function
of t′, we have

x′(t′) = x′i + vx(t′ − t′i) (and similarly for y′(t′))

Although the number t′i is, for any specific motion, different from the number ti, it is
clear that the form of the equation is exactly the same as the original one in the old
reference system. Thus, if we are told that the form of the equation of motion of a free
body is (∗∗), we can tell nothing about where the origin of time has been set.
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A similar argument shows that if we were, instead of 1), to carry out operation 2)
(say for definiteness with y0 = 0), the result is

x′(t′) = x′i + vx(t′ − t′i) x′i ≡ xi − x0 t′i ≡ ti (and y′(t′) = y′i + vy(t′ − t′i), y′i ≡ yi)

Again, the number x′i is different from xi but the general form of the equation of motion
is unchanged.

Continuing along these lines, we actually find that for the special case of free motion
(no external forces) the laws of motion (i.e. (N1)–(N3)) are invariant under all of the
operations 1)–8). However, this is no longer true when we introduce external forces
and/or interactions between the particles composing the system. In particular, the
“scale” transformations 6) and 7) practically never leave the laws of motion invariant.
Consider for example N2, which says (provided mass is constant) that the acceleration
of a body is equal to the force on it divided by its mass, and suppose the “force” in
question is gravitational. Then, according to Newton’s law of universal gravitation, it
is a function only of the distance from the attracting object and is quite independent of
the unit we use to measure time. On the other hand, the acceleration is a rate of change
of velocity (i.e. distance/unit time) with time, and does depend on the unit used: the
number which gives the gravitational acceleration at the earth’s surface is approximately
10 meters/sec2, but it is approximately 36000 meters/min2! Thus there is no invariance
under operation 6), in the sense that if we consider, for example, a planet orbiting the
Sun, while we can always write

acceleration = g/r2

the actual number g depends on the unit of time chosen†. In the same sense there is in
general no invariance under the operation 7¶).

As regards the other operations listed above, it depends somewhat on the exact
physical situation considered. The operation of space inversion 5) is almost invariably a
“good” symmetry (i.e. does not change the form of the laws of motion); it is impossible,
by inspecting a movie of particle motion, to tell whether the coordinate system used is
left- or right-handed‖ (roughly speaking there is no natural “front” or “back”). Similarly,
4) (time reversal) is a good symmetry so long as we can neglect friction, air resistance
and other so-called dissipative process; under these conditions it is impossible to tell, by
inspection of the movie, whether it is being run backwards or forwards. However, time
reversal and space inversion are not continuous symmetries, and therefore, in classical
physics, do not give rise to conservation laws (it is interesting that they do in quantum
mechanics).
†The reader might perhaps wish to argue that the replacement g → g′ under operation 6) is in

principle no different from the replacement v → v′ under a Galilean transformation. This is true, but as
we shall see the G.T. does not in itself lead to a conservation law.
¶For the special case of the simple harmonic oscillator (force proportional to displacement) we do

have invariance under 7) (but not 6)), and there is in fact a conservation law associated with this, but
it is rather subtle.
‖The so-called “left-hand” rule etc. of textbook electromagnetic theory is illusory in this respect: it

merely defines the convention for the sense of the magnetic field.
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Thus, we are left with the four operations 1), 2), 3) and 8) – time translation, space
translation, rotation and Galilean transformation. In pre-relativistic physics, the role of
Galilean transformation is somewhat anomalous – it gives rise to no new conservation
law as such, but rather relates two existing ones (see end of this lecture). We therefore
focus first on 1)–3).

Let’s start with operation 2), space translation. We can state that the dynamics of
any body, or system of bodies, on which no external forces act is invariant under space
translation. For a single body we have, indeed, already seen this: such a body performs
uniform motion with constant velocity, and we saw above that this means that the form
of the dynamics is invariant under a shift in the origin of space coordinates. For a system
of bodies subject to no external force we already saw (lecture 7) that N2 plus N3 implies
conservation of the total momentum, i.e. the quantity∗∗

∑
imivix (and similar quantities

involving the y- and z- components of velocity). Let us reformulate this. We introduce
the “center of mass x- coordinate” X by the prescription

X ≡
∑

i

mixi /
∑

i

mi

(If we think for a moment of the different masses as all in the same line and joined by
light rigid bars, the center of mass is just the point at-which we would have to support
the array so that it would not tilt either way under the influence of gravity). Now if we
consider the “velocity” of the center of mass (i.e, the rate of change of X), since

∑
imi

is just the total mass M of the system we have

M × (rate of change of X) =
∑

i

mi × (rate of change of xi)

≡
∑

i

mivix ≡ total momentum (inx direction)

But we know that the total momentum is constant, and the total massM is also constant,
and thus in conclusion that for a system of bodies subject to zero external force the
center of mass moves at constant velocity. The form of this motion, like that of a
single body, is invariant under space translation. What about the relative motion of the
constituent bodies? In general this will be very complicated, and we cannot predict it
without knowing the details of the forces acting between them. However, the crucial
point is that this relative motion is automatically invariant under space translation of
the coordinate system: if x′ = x−x0, (where x0, remember, is a definite number, namely
the x-coordinate of the new origin in the old coordinate system) then obviously we have

x′i − x′j = xi − xj !

Thus we can say that the conservation of total momentum implies invariance against
space translation. Actually, the modern point of view turns this around and says that
∗∗The notation “

∑
i pi” simply means the sum of the quantities p for the different particles i involved.

Thus for example for two particles 1 and 2, the expression “
∑

i mivxi” means m1vx1 + m2vx2.
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invariance under space translation implies conservation of total momentum. Obviously,
this is not a logical consequence of the former statement, and to make it work one
actually needs to specify the properties which have to be invariant under translation a
little more carefully than done above.††

Next we turn to operation 3), rotation of the space coordinate system. This time
we shall proceed in the opposite direction, from invariance to conservation. Consider
first a body which is subject to a force exerted by another (much more massive) body,
e.g. a planet in the gravitational field of the Sun. It is natural to take as the origin of
coordinates the center of the Sun, and the rotations we shall consider are around this
origin. Suppose the force in question has the property of being “central,” that is, it is
directed along the line connecting the body in question to the origin and depends only
on distance, not on direction. This is certainly the case for gravitation, according to
Newton’s universal law, and it also turns out to be true for a number of other important
forces, e.g. the electrostatic force (lecture 10).‡‡

If this is true, then it is intuitively clear that all directions in space are, regarded
from the origin, in some sense “equivalent” and our problem will possess the property of
invariance under rotation (around the origin) (This statement can be proved formally,
but the proof is a bit messy if one does not use vector notation, so I will rely at this
point on intuition).

Now we already saw (lecture 6) that the “central” property of the force between
the Sun and the planets (or more precisely, that part of it which states that the force
is along the line joining them) implies Kepler’s second law, namely that the “rate of
areal sweeping” by the planetary orbits is constant. (For a nice discussion, see Feynman
pp. 41–3). It is convenient (we shall see below why) to multiply this rate by twice the
mass and define

2×mass× rate of areal sweeping = “angular momentum′′

Since the mass is constant, we can thus state that for any central force the angular
momentum is conserved.

Consider next two (point) bodies interacting in the free space (i.e. no external force),
with forces which are “central” in the sense that they act along the line between the
bodies and are direction–independent. We already defined the “center of mass (COM)”
of such a system, and showed that it moves with constant velocity. We can therefore
choose an inertial frame in which the COM is at rest. Now since the forces are directed
along the line between the bodies and the center of mass lies on this line, we can take the
COM as origin and apply Kepler’s second law to each of the two bodies separately. As a
result the angular momentum of each, and hence the total angular momentum, relative
to the COM is conserved. Clearly this statement must hold for any inertial observer,
††Technical note (for the cognoscenti only): The required addendum is that not only the form of the

equation of motion but the actual value of the potential energy (see below) should be invariant. (To
see why this is necessary, consider e.g, a body falling in the uniform gravitational field at the earth’s
surface).
‡‡Magnetic forces are a bit more complicated (lecture 10).



PHYS419 Lecture 8 Symmetry Principles and Conservation Laws 9

since the relative velocity of the bodies around their COM, and hence the rate of areal
sweeping, is the same for any such. Thus, for any system of bodies subject to no external
force and interacting only by central forces.

total angular momentum around COM = constant

So far, so good. What if we choose, however, to reckon the angular momentum around
some point other than the COM? It turns out (this is not obvious) that the so-defined
angular momentum is then the sum of two terms: the angular momentum around the
COM, which we have just, seen is constant, and the “angular momentum of the COM
itself” i.e. the total mass × the rate of areal sweeping by the COM relative to our chosen
origin. But since, as we have seen, the velocity of the COM is constant, this term is also
constant! Thus, we can finally make the following statement: Irrespective of the choice
of origin,

For a system subject only to internal central forces, the
total angular momentum is conserved.

Note that this statement is true even though with different choices of origin the actual
value of the angular momentum is different.

Finally, we consider the consequences of invariance under time translation. In a way
which is not at all obvious prima facie (and took a couple of centuries to work out in
full detail!) this is associated with what is perhaps the most famous of all the laws of
physics, conservation of energy.

In his work on pendulums and related systems, Galileo made two very important
observations concerning bodies for which friction, air resistance etc., is negligible:

1. A body dropped from rest at a certain height always rises again to exactly that
height, and

2. If a body starts from rest and falls through a height ∆h (≡ ∆z), its final velocity
is given by the relation v =

√
2g∆h

Using a certain amount of hindsight, we can combine these statements (actually with
some degree of generalization) into an equation which has the form of a conservation
law: for any body moving in the Earth’s gravitational field in the absence of friction,
etc.,

1
2
mv2 +mgh = const (α)

The first term, which depends on the velocity but not the position, is called the “kinetic
energy” (originally, “vis-viva” (“living force”)) and often denoted T . The second term,
which depends on the position (height) but not the velocity, is called the “potential
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energy”. The total energy of the system is the sum of the kinetic and potential energies,
and according to the above statement is conserved.

The great advantage of this formulation is that it can be readily generalized to many
types of force other than gravitational. Consider a small change in the h and v in
eqn. (α). Indicating “change of” by the symbol ∆, we can write

∆
(

1
2
mv2

)
+mg∆h = 0

Now, if we consider only a small region of space, any force F can be regarded as “equiv-
alent” to a gravitational force mgeff , with the provisos that (a) geff not in general be
independent of m, and (b) the direction of the force will not in general be vertical. It
thus seems very natural to generalize the above equation to this case to read

∆
(

1
2
mv2

)
− F ∆x = 0 (β)

where ∆x is a small displacement in the displacement in the direction parallel to that
of the force (hence the – sign).‡‡ Suppose now that we can find a quantity V which
depends on position in space in such a way that we always have

∆V = −F∆x (γ)

It is not obvious that such a quantity must exist, and indeed it will only do so if the
force in question has a certain property (technically called “conservative”); fortunately
almost all of the (non-frictional) forces of interest do possess this property. If so, then,
devoting the kinetic energy as above by T , and the quantity T + V by E, we have

T + V ≡ E = const

- the law of conservation of (mechanical) energy. This law may be generalized to systems
of many bodies; in this case the potential energy will in general depend on all their
coordinates. However, if no external forces act on the system then it is straightforward
to show that the potential energy can depend only on the relative coordinates.

One might well ask what on earth all this has to do with invariance under time
translation. The answer is the following: In the above, it was implicitly assumed that
the force F was time-independent (and therefore, does not depend on the way in which
we choose the “origin of time”). Suppose F , while still “conservative,” is allowed to
depend on time, then while eqn. (β) will still be valid, we can no longer write eqn. (γ):
the reason is that V will in general now also have to be time-dependent, and thus ∆V
can be nonzero even if ∆x is zero. So in general we will no longer be able to derive the
conservation of energy. A nice example of this is a child working herself up on a swing; if
we regard the “system” as simply the mechanical system formed by the child’s body and
‡‡Note that increasing “height” (h)(≡ z) is conventionally taken in the direction opposite to the earth’s

gravitational force, i.e. upwards.
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the swing,∗ then it is clear that when she reaches maximum height on successive swings
the kinetic energy is the same (zero) but her potential energy has increased. The reason
is that, by the child’s volition, the forces between the component parts of the system
(e.g. legs and torso) are time-dependent, so the conservation of (mechanical) energy is
violated.

In the course of the eighteenth and nineteenth centuries the concept of “energy” was
gradually generalized to include, besides mechanical energy, also for example energy as-
sociated with static or propagating electric and magnetic fields (lecture 10), energy asso-
ciated with chemical reactions and, most importantly, the “heat” energy associated with
the random motion of atoms and molecules. Taking the latter into account enables us
to apply the principles of conservation of energy even to cases involving friction; friction
(and other dissipative processes) is nothing but the conversion of macroscopic mechani-
cal energy into “random” kinetic (and/or potential) energy of atoms and molecules. We
will return to this topic later in the course in connection with irreversibility.

Finally, a brief word concerning the consequences of invariance under Galilean trans-
formation. Let us study how the momentum and energy transform under a G.T. from
one inertial frame to another moving with velocity u relative to it.

Since velocities transform as v′ = v−u, we have for a single free particle (no potential
energy!)

p′ ≡ mv′ = m(v − u) = p−mu

E′ ≡ 1
2
mu′2 =

1
2
m(v − u)2 =

1
2
mv2 −muv +

1
2
mu2 ≡ E − up+

1
2
mu2

In the case of a compound system the result is simplified by the fact that, provided no
external forces act, the potential energy is a function only of the relative coordinates
and therefore is invariant under G.T. Since the total momentum P and kinetic energy
E is just a sum of the contributions of the individual bodies, we have simply (M = total
mass)

P ′ = P −Mu, E′ = E − uP +
1
2
Mu2

From this we derive the following conclusion: If there exists one inertial frame in which
both momentum and energy are conserved, then they are conserved in any inertial frame.
Moreover (Galileo!) if momentum alone is conserved in anyone inertial frame it is con-
served in any. However, from the fact that energy is conserved in one frame it does not
necessarily follow that it is conserved in any. As an example, consider a ball bouncing
against the wall of a carriage in a uniformly moving train.† As viewed from the train,
the energy of the ball is conserved but its momentum is not. However, an observer on
the earth will see the velocity relative to him changed on the bounce, and will therefore
∗Thereby ignoring the “energy” which we would now associate with biochemical changes in her

muscles, etc.
†The train is not counted as part of the “system,” but as a source of “external” forces.
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reckon that energy is not conserved. The reason is that the force exerted by the (moving)
wall (admittedly a very short-range one!) depends strongly, for given position relative to
the ground, on time, and according to the argument given above, this permits violation
of energy conservation.

We will see later that the special theory of relativity allows us to view the relationship
between energy and momentum conservation is a new and instructive light.


