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Newtonian Mechanics 

Alexander Pope's famous verse runs 

"Nature, and Nature's laws, lay hid in night: God said, Let NEWTON be! 
and there was light." 
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and this is perhaps not an outrageous exaggeration; certainly, Newton's work marks the 
beginning of modern physics as we know it. Indeed, insofar as we can neglect the cffc'Cts 
of relativity (which enter only for very high velocities) and of quantum mechanics (which 
generally speaking enter only on the atomic scalc), we still believe that the description 
he gives of "the mot.ion of bodies" is correct. Actually, Newton was a considerable 
polymath; within the area of physics he of course made fundamental contributions not 
only to mechanics (which is what I shall be concentrating on for the purposes of this 
course) but also to optics, and outside physics he gained a reputation in his lifetime 
as both an administrator and a theologian. He was, in fact, a fundamentally religious 
pef8on, and almost certainly approved of the remark made in Cotes' preface to the 1713 
edit.ion of hi" Principia, to the effect. t.hat. 

"He has so clearly laid open and set before our eyes the most beautiful frame 
of the System of the vVorld, that if King Alphonso were now alive, he would 
not complain for want of the graces either of simplicity or of harmony in 
it. Therefore we Illay now more nearly behold the beauties of Nature, and 
entertain ourselves with the delightful contemplation; and, which is the best 
and most valuable fruit of philosophy, be thence incited t.he more profoundly 
t.o reverence and adore the great Maker and Lord of all. He must be blind who 
from the most wise and excellent contrivances of things cannot sec the infinite 
vVisdom and Goodness of their Almighty Creator, and he must be mad and 
senseless who refuses to acknowledge them. Newton's distinguished work will 
be the safest protection against the attacks of atheists, and nowhere more 
surely than from this quiver can one draw forth missiles against the band of 
godless men." 

';V'hat were Newton's achievements in the area of mechanics'! In his classic book "Phi
losophia.e Natu.ra.!;., Principia. Ma.themat;ca." (the Mat.hematical Principles of Natural 
Philosophy) (1686), 

1. He formulated the fundanlental laws of (classical) dynamics which we now know 
as Newton's laws. 

2. He developed (simultaneously with Leibniz in Germany) the branch of mathematics 
we now know as the differential calculus , which is essent.ial to explore in detail the 
consequences of his laws. 

3. He formulat.ed the law of universal gravitation. 
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4. He unified (compare the story of the falling apple) t.he phenomena of terrestrial and 
eelestial gravitation, and drew a host of consequences, particularly for planeta.ry 
motion. 

In this lecture I will review, more or Ie,,, following Newton 's own style of definitions and 
axioms (but in somewhat different order) , the bWlics of Newtonian mechanics, and in 
t.he next lecture will explore the philosophical presuppositions and implications of his 
work. 

Newton took from GaIiIeo the important dist.iuction between the description of mo
tion ("kinematics" ) and the investigation of the "causes" of motion for any physical 
system ("dynamics"). Let's start. with the description of motion: 

A. Definitions ("kinematics") 

• Absolute space: 

"Absolnte spaee, in its own nature, without relat.ion to anything ext.ernal, 
remains always similar and immovable. Relat.ive space is some movable 
dimension or measure of the absolute spaces; which our sense;; determine 
by its posit.ion to bodies; a.nd which is cOlUmonly taken for imlllovable 
space; such is the dimension of a subterranCOlls, an aerial, or celestial 
space, determined by its posit.ion in respect of the earth. Absolute and 
relative space are the same in figure and magllit.ude; but. they do not re
main always numerically the same. For if the earth, for instance, moves, 
a spt«::e of our air, which relatively and in respect of the earth remains 
always the same, will at. one time be one part of the absolute space into 
which the air passes; at another time it. will be another part of the same, 
and so, a.bsolut.ely lmderstood, it will be continually changed." 

• Absolut.e time: 

"Absolute, trne, and mathematical time, of itself, and from its own na
ture, flows equably without relation to anything external, and byanot.her 
nume is called duration: relative, apparent , and common time, is some 
sensible and externa.l (whether accurate Or uncquable) measure of dura
tion by the means of motion, which is commonly used instead of true 
time; such as all hour, a day, a month, a year." 

• Absolute motion: 

"Absolute mot.ion i~ the translation of a body from one absolute place 
into another; and relat.ive motion, the t,ranHlation frum one relative place 
into another. Thus in a ship under sail, the relative place of a body is 
t.hat part of the ship which the body possesses; or that part of the cavity 
which t.he body fills , and which t.herefore moves together with the ship: 
and relative rest is the continuance of the body in the same part of the 
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ship, or of it.s cflvity. But real, absolute rest, is the continuance of the 
body ill the same part of that inmlOvable space, in which the ship itself, 
its cavity, find all that it contains is moved. Wherefore, if the earth is 
really at rest, the body, which relatively rests in the ship, will really and 
absolutely move with the same velocity which t.he ship ha>; on the earth. 
But if the earth also moves, the true and ahsolute motion of the body 
will arise, pa.rtly from the true motion of the earth , in immovable space, 
partly from the relative motion of the ship on t.he I'Afth; and if the body 
moves also relatively in the ship, its t.rue motion will arise, partly from 
the true motion of t.he earth, in immovable space, and partly from the 
rdative mot.ions flS well of the ship on the eart.h, as of the body in the 
ship; and frOUl these relat,ive motions will arise tIle relative motion of 
the body on the earth. As if that part of the earth, where the ship is, 
was truly moved towards the east, with a velocity of 10010 pa,ts; while 
the ship itself, with a fretili gale. and full sails, is carried towards the 
west, with a velocity expressed by 10 of those parts ; but a sallor walk~ 
in t.he ship towards the east , with 1 part of the said velocity; then the 
sailor will be moved truly in immovable space towards the east., with a 
velocity of 10001 parts, and relatively on the earth towards the we;;t, 
with a veloci ty of 9 of those. parts." 

Other concepts which are fundanlental in Newton's work:' 
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(a) "Quantity of matter", i.e. mass; somewhat surprisingly, \Tewton defines it (Prin
cipia, p. 1) as the product of density and volume (from a modern point of view, 
it seems more natural to take mass as the primitive concept and define density as 
the ratio of mass to volume). Newton explicitly notes (p. 1) that the mass of a 
body "is proponional to the weight, as I have found by experiments on pendu
lums" and later (p. 304) remarks that "by experiments made with the greatest 
accuracy, I have always found the quantity of matter in bodies to be proportional 
to their weight", hut does not seem to kel that this proportionality is particularly 
remarkable (it took Einstein, 230 years later, to bring out its significance). 

(b) "Quantity of motion" (momentum, in modern terms) is defined as mass x velocity. 
Newton dop.;; not feel it necessary a.t this point to define velocity, but we need to, 
00 a short digression: 

Con"ider the motion of a body in a straight line, anel mark off po<;itioIl ("coordinate" ) 
x along this line, with some arbitrary ,ero (more on thi" in the next lecl.ure). The motion 
of the body can then be described by giving the value of time, t, as a function of x, that 
i", by giving the t imes at which different points on the line are reached. Actually, it is 
mare cOIlvenient and natural! to give the information the other way around , i.e. to take 

"'References are to the Motte-Cajori translat ion of the Principia (University of California Pre~, 1966) 
tBocause I inter alia~ the body can be a.t the same position at several different times, but for a given 

time can be at only one position. 
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time t as the "independent" variahle and ask "At a given time t, what was the position 
x ?" Imagine that we space the different values of t for which we ask the question more 
and more closely, so that in the end t becomes a "continuous" variable; then we are 
asking for x as a function of t. We have several ways of representing the answer, e.g. 

l. give a table of numbers, that is, the numerical value of x for each .( closely spaced) 
value of t. 

2. draw a two-dimensional graph, in which t is represented by the horizontal axis and 
"' by the vertical one. 

3. give an explieit algebraiC formnla: e.g. for free motion x = const X t, or for free 
fall nnder gravity, "' = at2 j 2 

it is a fact of observation that under normal conditions x is a relatively "smoot.h" function 
of t. 

\Ve are now in a posit.ion t.o define the concept of velocity. First, we pir.k two times 
which are "close" together, t, and t~ and define a sort of "average" velocit.y byl 

X2 - Xl 
VU\! == 

t2 - tl 

The quantity Vav clearly depends in general on how far apart the times t] and t2 are. 
However, if we make them closer and closer together, then provided the curve of x against. 
'1, is "smooth" the expression for Vav obt.ained in this limit is just the slope of the curve 
at time t and is well-defined. So we ean define the true velocity v at time t by 

. " 2 - "'1 . 6.,r 
v =' lun == lun -

t,~t. t2 - t, "'t~O 6.t 

(equivalfmt. to : in the stillldard notation of the differential calcullls). Note that v is in 
general a function of t. 

Although the idea of an "instantaneous velocity" which may depeud on tillle is nowa
days a basic concept in physics, it may he heart.ening for those who find it difficult to 
grasp that Galileo's contemporaries evidently had equal difficulty; see his Dialogu" on 
th.e Two New Sciences, p. 164. 

One other notion we lleed is t.hat of "composition of velocities". Taking the concept, 
of "mutually perpendicular" (or "right angle") us intuitively given, let. 's use e'lually 
spaced horizontal and vertkal lines to mark off a two-dimensional "grid" whicb will 
define two different coordinates, say x (horizontal) and y (vertical). (Unfol'tnnately, we 
ca.u now no longer repreBent. t.ime hy the horizonta.l axis and have to just represent. it by 
an algebraic symbol). \Vc can now discuss th" (l'lantiti"" x and y separately as a function 
of t: x = ,c(t) , y = y(t ), and define the two different corresponding "componentM" of 
velocity Vx , Vy by 

v = lim 6.x (= dX) 
x - ~t~O 6.t - dt ' 

~The symbol " = '~ is conventjonally used in mathematics and physics to denote ::L definition . 
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It. is natural also to define the total velocity v (or "speed") a~ the ratio of total distance 
travclod (call it 605) to the time 6t elapsed. But. by Pythagoras ' theorem, (6 05)2 = 
(6x? + (6y j2, and hence if we define IlS suggested 

t.hen we have 

1
. 6 5 

'v= Im
£>t-O 61. 

'1.'2 = vi t v~ 

The great advantage of this procc'tlure§ (which we can go through for ally quantity having 
a "direction" associat.ed wit.h it) is that it allows liS t.o discu,;:; the different "component.s" 
Vx , 'Uu of velocity separately. Note that the dlOice of the a.xcs I and y is arbit.rary, pro
vided that. the "grid" so generated is indeed square (otherwise Pythagoras ' theorem does 
not apply) . I have gone througb the procedure explicitly for two dimensions, but it is 
easy to Sf!Il how to generalize it. to three; in this case the conventional choice of axes is 
to have two hori7.rmt.al and one vertical. I'll rel.l1 rn t<> this question in Lect.m:e 7. 

Return.ing now t.o Newton 's definitions, we also have 

(c) "The vis insita, or innate force of matter, is a power of resisting, by which every 
body, as much as in it lies, continues in its p resent state, whether it be of rest , or 
of moving uniformly forwards in a right line ... " 

"R.esistance is usua.lly Ascribed to bodies at rest, and impulse to those ill motion; 
but motion and rest., as commonly conceived, are only relatively distinguished ; nor 
are those bodies always truly at rest" which commonly are taken to be so" . 

(d) Force: An impressed force is an action exert.ed upon a body, in order to change 
its state, either of rcst , or of uniform motion in a right line. This force consists in 
the action only, and remains no longer in the body when the adion is over. For 
a body maintains every new stat.e it acqnim;, by its inertia only. But impressod 
forces are of different origins, as from percllssion, from pre,;:;ure, from centripetal 
force ." 

In some sense these passages are the most defin.itive st.at.ement of the final break with 
Aristotelian physics. It Lq now no longer rcst, but rather uniform motion which is the 
"nat ural" st,ate and needs no explanation - a force is needed only to set a body, ini
tially at rest , in mot ion. Thereafter the body ma.intains the new state of motion it has 
acquired "by its inertia only" . (" Vis ins'ita" seems to be llsed by Newton more or less 
intel'Changeably with "inert ia", whidl has essentially its modern sense). 

It is interesting that Ne",1:on here seems to be conscious of the danger of circularity 
am! so goes ont of his way to specify examples of physical forces. Note also that it is 
implicit, here, that force h"" 11 tlirecl.ion (and hence, like velocity, call be "resolved" into 
"components" ) . 

§It i1:i sometimes called "resolving" the velocity into its "components". 
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B. Newton's laws of motion 

1st law "Projc'Ctiles continue in their motions, so far as t.hey are not retarded oy the 
resistance of the air , or impelled downwards by the force of gravity. A top, whose 
parts by their cohesion are continually drawn aside from rectilinear motions, doc'll 
not ceillie its rotation, otherwise than as it is retarded by the air. The gt'eatel' 
bodies of the planets and comets, meeting with less resistance in freer spaces, 
preserve their motions both progressive and circular for a much longer time" . 

In modern notation, this states: the velocity of a body is constant in time if there 
are no external forces acting on it. 

2nd law "The change of motion is proportional to the motive force illJpressed; and is made in 
the direction of the right line in which that force is impressed". In modem notation: 
The rat.e of change of momentum is equal to the applied force, both in magnit.nde 
and in direction. Note that since moment um is defined as mass x velocity (see (b) 
above) t.hi., implies the notion of a second time derivative: if mass = const.ant., t.hen 
rate of change of moment.uJII = mass x rat.e of change of velocity == JIIass x accel
eratiou. What. exactly do we IIlean by this? We can define acceleration a by 

However, the velocity 1i is itself defined illi a derivative, v == limtot-o ~~, and hence 
we have 

a == lim !:;, ( !:;,x / !:;,t) 
tot-I) !:;,t 

(== ~ in the standard lIotation of the differential calcnlus). In graphical terms, 
a is the curvature (rate of change of slope) of the graph of x versus t. I return 
in lecture 7 to the questioll of whether the second law is "circular". i.e. merely a 
definition of "force". 

3rd law "To every action there is always opposed an equal reaction: or, the mutual act.ions 
of two bodies upon ea<"ll other arc always equal, alld directed to contrary parts". 
" ... If a body impinge UPOII another, and by its force dlange the motion of the 
other, that body also (because of the equality of t.he mutnal pressure) will undergo 
an equal change, in its own IIlotion, towards the contrary part, The changes made 
by these actions are equal, not in the velocities out. in t.he motions of bodies; that 
is to say, if the bodies are not hindered by any other impediments, For, because 
the motions are equally chauged , the changes of the velociti~'ll made towards con
trary parts are inversely proportional to the bodic'll. This law t.akes place also in 
attractions, as will be proved in the next Scholium". In modp.rl1 notation: If two 
hodies, 1 and 2 interact , then the change of momentum of 1 is equal and opposite 
to the change of momentuIIl of 2, and hence the velocit.y changes 'V, and V2 satisfy 
the relation 
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- a result which will be familiar, at lea..t. qualitatively, to anyone who has ever T.rieel 
to step out of a punt which is not mooreci to the bank! An alternative formulation 
is: The total momentum of a system of bodies on whieb no external forces act is 
conserveci (i.e. is constant. in time). 

Note that eaeb of Nc"i;on's laws appliffi t.O each of the different "components" of 
velocit.y, ete., separately. E.g. suppose t.hat. a body moves in the Earth's gravi
tational fielel. Then there is no force in the hori7,Ont.al elirection, so by the first 
law the horizontal components of momenLum are constant, and since the mass is 
constant, this means that the components of velocity are also constant. On the 
other hand , in the vertical direction there is a force (gravity); thus, by the second 
Ia.w t.he rat." of change of vertical velocity (verti cal acceleration) is r,he force divided 
by the mass, which in this ca.se is just the well-known gravitational acceleration g. 

C , The law of universal gravitation 
(Principia, book III, Prop, VII and Cor. II) 

"That there is a power of gravit.y pertaining to all bodie'S, proportional to the several 
quantities of mat.ter whieb they contain": "the force of gravit.y towards the several equal 
particles of any body is inversely as the square of the distance from the particles" . 

In modern terminology: Between any two bodies of mass Tn) , Tn2 there is a gravita
tional force of at.t.raction, directed along the line between them" AJld proportional to the 
inverse square of the distance. In symbols, 

where r is the distance between t.he bodies. (G is the so-called Cavendish or gra.vitational 
constant). The really crucial insight, here, is that the same force as draws the mythical 
apple to the ground, sustains the motion of the planets in their orbits. A telling pa.ssage 
here is the following one (Principia, p. 3) : 

" ... If a leaden ball, projecteci from the top of a mountain by the force of 
gunpowder, with a given velOCity, and in a direction parallel to the horizon, 
is carried in a curveel line to the distance of two miles before it falls to the 
ground; the same, if the resistance of the air were taken away, wit.h a double 
or decuple velocity, would fly twice or tell times as far. And by increasing 
the velocity, we may at pleasure increa.~e the dist.ance to whieb it might be 
projected, and diminish the curvature of the line which it might describe, till 
at last it should fall at the dist.ance of 10, 30, or 90 dcgTee~ , or even might. go 
quite round t.he whole earth before it falls ; or lastly, so t,ha.t, it might never 
fall to t.he earth, but go forwards into the celestial spaces, and proceed in 
its motion in infinitum. And after the same manner that a projectile, by 
the foreR. of gravity, may be made to revolve in an orbit , and go round the 

' Or (for spherica.l bodies) hetween their centers. Such forces are oft.en called ';centraJ" . 
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whole earth, the moon also , eit.her hy the force of gravity, if it is endued 
with gravity, or by any other force, that impels it towards the earth, may be 
continually drawn aside towards the earth , out of the rectilinear way which 
by its innate force it wOllld pursue; and would be made to revolve in the 
orbit which it now describes; nor could the moon without some such force 
be retained in its orbit.." 

8 

Although Newton, characteristically, docs not tell us how he hit upon the law of universal 
gravitation , and in particular the inverse-square aspect, it seeffi8 likely that having hit 
on the general idea he deduced the details from Kepler 's empirical laws of planetary 
motion. Recall that these are: 

1. The planets move in ell iptical orbits with the Sun at olle fOCllS, 

2, Equal areas are swept out in cqual times. 

3. The square of the orbit period is proport ional to the cnbe of the (suitably averaged) 
distance from the Sun. 

How do Newton's laws of motion, plus his law of universal gravitation, explain these 
empirical facts? 

1. While t.he elliptical shape of the orbit requires a detailed calculation (and t,urns 
out to depend crucially on the law being exactly inverse-square), it is fairly e.asy 
to see t hat Newton 's first law plus the "central" nat.ure of the gravitational force 
call explain at. least the fact that the plane of t.he orbit contains the Sun. At any 
inst,ant the velocity of the planet, and t.he line connecting it to the Sun, together 
define a plane: let. us dlOose our coordinate system so that it is t.he xy plane, I\ow, 
t.he gravitational force is directed towards the Sun and thus lies in the xy plane; 
there is no force, and hence no acceleration, in the z direction (i.e, the direct,ion 
perpendicular to the plane). But acceleration is just rate of change of velocit.y, and 
thus since originally, by const.ruction, the velocity had no z component, it. never 
acquires any. Thus the orbit remains forever in the :J.:y plane as required. Note 
that this argument is independent of the distance dependence of t,he gravita.t.ional 
force, 

2. Kcpler's second law is automatically satisfied for the case of z('ro external force (i,e. 
uniform motion in a straight line) since the area of a triangle is ha.lf its base t imes 
its perpendicular height, and the latter is constant (ef. Feynman, p. 42). For the 
proof in the case of a "cent,ral" force such as gravitation, sec the original aIgum'lIl!, 
of Newton as reproduced in Feynman, pp. 41-3 (but note, as Feynrnan does not 
do explicitly, that the line between t.he points he ma.rks 3 and 4 is parallel to the 
radius (i.e., the line connecting the planet, t,o the Sun). Again , the result depends 
only on the "central" property of the force and is independent of the inverse-square 
aspect. 
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3. The proof of Kepler's third law is a bit mme tricky and I shall give it only for 
circular orbits (actually a pretty good approximation for the Earth and the inner 
planets). We assume that sillce t.he moss of the Sun is huge compared to that of 
any of the planets, we can neglect. the recoil of the Sun, i.e. regard t.he latter as a 
fixed "center of force" . 

R 

Consider the application of Newton's second law to the hori7.0nt.al component of the 
velocity as shown on the diagram. Suppose we average it over half a period, then we 
have 

average horizontal acceleration a = average gravitational force/mass 

Now t.he speed of the planet in its orbit is consta.nt and equal to the orbit circumfer
ence, 21r R, divided by the period 1'; sine.e t.he horizontal mmponcnt is reversed in half 
a period we have 

V2 = -V1 = 2rrR/T, a = ~v/~t = (V1 - v2)!(T/2) = 81rR/T 2 

As to the average horizontal component of gravitational force/mass, this is GMs/ R2 (G 
= gravitational constant, Ms = mass of Sun) X the average horizontal fraction of t.he 
line joining the planet to the SW} over the half period indicated. If we call this froct,ion 
ct 

871'R GMs 
1'2 = c· R2 

or 
2 81r R3 . 3 

T = - . G'" = const . R 
c ms 

as "t.ated by Kepler's third law. Note that if we know the absolute distances of the 
planets from the Sun (and know the value of c) , we can infer from their periods the 
product GMs(hut not Ms by itself). 

Leh finally apply t.his argument, as Nowtou did, to the mot.ion of the Moon around 
the Earth. According t.o the law of universal gravitation, the [!;ravitat.ional acceleration 
due to r.he Earth at the position of the Moon is independent of the mass of the latter 

tIt is actually 2/1r, but. we do not need to know this to draw the conclusion (--) 
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ami a factor "U R~I timcs that at the surfacfl of the Earth (rE = radius of Earth, RM = 
distanoe of Moon fwm cellter of Earth). That is, 

a~loon = 9 . r~1 R~[ 

where 9 is gravitational H.,cc:eleration at Earth's surface. Since*'" !l is I1.hOllt. 10 Injsec2, 
TE "" 6400 km and RM (as measured e.g. by triangulation) ."" 3,8 x 105 km, the accelerat ioll 
of tho Mooll in its orbit, is about 2,8mm/se<;2 In which direction is t.his acceleration (call 
it n.)? It has to be in the direction of the force, i.e. towards the Earth , and its magnitude 
is const.ant, Its average horizontal component Ii over the half-period considered ahove is 
c x a. where c(= 2/rr) is the constant mentioned above, so using the result ii = 81fR/T2 
(sec above) we find 

a = 47r2 R/Tz 

(this is a standard result for a circular orbit) , Thus for the moon we predict 

If we pu t in the value of a, '" 2.8""m/8e2, derived above, Wfl fi nd that T,H is about 
2.5 x 106secs, i,e. just ahout 28 days! This was probably the first and most impressive 
pay-off of the "falling-apple"argument. Note, again, that we don't need to know the 
mass of the Moon to derive it: this is a quite general characteristic of bodiPB accelerated 
by the gravitational field of a [fiuch larger body such flS the Earth - as Galilco observed, 
in the Earth 's field all hodies accelerate at the same rate, independent of their mIlS.~, 

and t.hiR is true whether they are in Pisa or at th" position of the Moon (though the 
acceleration is of course very difl'erent in the two cases) . 

• - ~ is t,h~ mal.hematkal symhol fm· "is approximately equal to". 


