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Philosophical Issues in Newtonian Mechanics

The Relation of Mathematics to Physics

It was Galileo who said, “The book of nature is written in the language of mathematics”,
but Newton who was the first to put this dictum into effect quantitatively. It isn’t
clear that even in the early 21st century the symbiosis is yet perfect, but physics and
mathematics are indeed so intimately intertwined that most physics text books don’t
distinguish consciously between those steps in their reasoning which follow by purely
mathematical deduction and those which require some physical intuition or assumption
(in an ideal world, they would be required to use different types for these two kinds of
steps!)

What is the nature of the mathematical “truth”? The Greeks were, reasonably,
impressed by the certainty of mathematical demonstration, as exemplified par excellence
in Euclidean geometry, and it is not surprising that this made them excessively fond of
the idea that one could obtain, if not complete knowledge about the physical world, at
least to a very high degree of understanding of it from purely a priori considerations.
(This applies particularly to Pythagoras, Plato, and their disciples). In modern times
one can perhaps distinguish three major classes of view:

1. David Hume held that all the truths of mathematics are analytic, that is, true by
virtue of the meaning of the concepts which enter them. (The traditional paradigm
of a (non-mathematical) analytic statement is one such as “All bachelors are un-
married”, which clearly conveys no new information to anyone who understands
the standard meaning of the term bachelor).

2. John Stuart Mill held, on the contrary, that mathematics tells us true empirical
facts about the world that it is justified by that alone. In other words, the truths of
mathematics are “synthetic” (the opposite of “analytic”), but by that same token
are not necessarily infallible.

3. To Immanuel Kant, mathematics was the paradigm of a kind of knowledge that
he called “synthetic a priori”; that is, knowledge which, because it is an intrinsic
consequence of the way in which we perceive the world, can be known to be true
without detailed inspection of the external world, but which is nevertheless more
than simply a reflection of the meaning of the concepts involved. One of Kant’s
favorite examples of a synthetic a priori statement about the physical world is that
it satisfies the axioms of Euclidean geometry-this is as we shall see when we come
to general relativity, in retrospect, an unfortunate choice.

A possible, somewhat commonsensical compromise view, is that while the truth of
mathematical statements is self-contained and needs no reference to the physical world to
verify it, such statements are only useful in the context of physics if there happen to exist
classes of objects in the world which obey the fundamental axioms of the mathematical
structure in question. For example (Hawkins), in a world which consisted only of clouds it
is unlikely that we would find the concept of the natural numbers very useful; conversely,
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we should not be particularly surprised if, having postulated a set of axioms which we
believe to be in fact satisfied by a class of objects in the physical world which is of
interest to us, we find that these axioms are also satisfied by other classes of objects
which may or may not correspond to something “out there” and/or of practical interest
(Hawkins, The Language of Nature, pp. 20-1, gives the example of the Peano axioms for
the natural numbers).

Ideas of Space and Time
(Sklar, pp. 15-25)

A major subject of controversy in the late seventeenth century was the nature of space
and time. As we have seen, (1.6), Newton was a firm believer both in the idea of
absolute space (“the sensorium of God”) and that of absolute time. In contrast, his
German contemporary Leibniz (a coinventor with Newton of the branch of mathematics
we now know as calculus) held a “relational” view of both; space is essentially nothing
more than a set of relations between material objects, and time similarly a set of relations
between events. This clash of viewpoints was made explicit in the famous correspondence
between Leibniz and Newton’s disciple Clarke.
    Evidently each point of view faces some obvious problems.  While Newton him-
self evidently believed that the Universe is infinite in spatial extent, this view was
not universal among his contemporaries, and if it is finite the obvious difficulty is:
what determines the position in “absolute” space at which the Universe sits?  (The
principle of “identity of indiscernibles” would suggest that no one position in space
is favored over any other.  This kind of argument may not at first sight look that
convincing, but we shall see later that it has some remarkably useful applications
in modern quantum and statistical physics statistical physics).  Even for a New-
tonian, the problem still arises in a somewhat milder form: what determines where
in infinite space the solar system sits? On the other hand, the Leibnizian view has its
own problems: (a) what is the status of “times” at which no event occurs, or points in
space at which there is no material object – do we have to introduce the idea of “potential”
events or bodies? (b) if (e.g.) space is a set of relations between material bodies, what
is it exactly that constrains this set of relations (e.g. so that Pythagoras’ theorem is
obeyed)? It is ironical that with hindsight Newtonian mechanics seems to be more
naturally formulated in relationist rather than an absolutist framework.

Space and Time Coordinates

It’s convenient at this point to introduce the idea of an “event” and its time and space
“coordinates”. (This idea, although certainly implicit in the work of Newton and his
successors, was only made completely explicit by Einstein two centuries later; but it
makes the subsequent discussion a bit easier). An “event” is simply some “happening”
which occurs at a definite time and place: e.g. the firing of a gun, a proposal of marriage,
the triggering of a Geiger counter by a cosmic ray . . . and so forth. (Obviously a certain
amount of idealization is involved here, as so often in physics: each of these “events” in
real life lasts a finite time and cannot be exactly localized in space, but for purposes of
illustration they will do). Having unambiguously identified the “event” of interest, we
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now want to specify its time and space “coordinates” – that is, give numbers which tell
us exactly when and where it occurred.

To this end we introduce the idea of a “standard clock” and a “standard ruler”. The
standard clocks used in the history of physics have been of various types: the King’s
heartbeat, a sandglass, a pendulum clock, an atomic maser . . . . In just about every case
there are some problems: for example, if a pendulum clock is mover to an upstairs room,
it will go slightly slow as compared to a clock of identical construction downstairs.∗ Let
us imagine that we have solved this kind of problem by some arbitrary rule, e.g. that
the standard clock must operate at sea level. Then we can define the time differences
between two events 1 and 2 ( to a good approximation) simply as the number of ticks
of the clock between 1 and 2. An immediate (and apparently trivial) consequence of
this definition is that if the time difference between event 1 and the (later) event 2 is
say 5 minutes, and the time difference between 2 and the (later) event 3 is 6 minutes,
then automatically the time difference between 1 and 3 is 11 minutes; or more generally
and formally, the time difference ∆tij between two event i and j satisfies the simple
additivity relation

∆t31 = ∆t32 + ∆t21 (∗)

Notice that in the above discussion we have nowhere assumed that the two events
which are compared occur at the same point in space; they may or may not. If they do
not, then there may be some practical difficulties in evaluating the time difference, but
these can apparently be overcome. In particular there is nothing (so far!) to prevent us
establishing that two events occur at different places at the same time.

If we wish to define not only the difference in time between two events, but also the
absolute time of a single event, then in addition to our standard clock we need to choose
some standard origin of time. This choice is purely conventional, and while most people
nowadays use a reckoning of hours, minutes, and seconds with the “zero” at midnight,
the “origin” of the year still differs throughout the world (the U.S. and Europe uses
the birth of Christ, the Muslim world the Hegira, and the Japanese the accession of the
current Emperor).

Next consider the choice of a “standard ruler” to define spatial coordinates. For the
moment let us restrict ourselves to events occurring at the same time. Then we could
for example choose our “ruler” the King’s foot, the standard meter rod in Paris or the
wavelength of the light emitted in a particular atomic transition. Again, the conditions
need to be carefully specified: e.g. the meter rod must be kept at a certain tempera-
ture, humidity, etc. However, given these conditions the length of the ruler is taken by
definition to be independent of e.g. the time of day or its orientation (the direction in
which it lies). We can now define, approximately, the space interval (distance) between
two events occurring simultaneously by laying (a set of replicas of) our standard ruler
between them and seeing how many we need. Do we have additivity similar to that for
time intervals? If the three events 1,2,3 which we consider happen to lie in a straight
∗(For the cognoscenti only): This effect (or at least the major part of it) has nothing to do with

general relativity; it is simply a consequence of the fact that the gravitational acceleration decreases
with distance from the Earth’s center.
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line, the answer is yes: if event 2 is to the right of 1 by 2 meters and 3 is to the right of
2 by 3 meters, then 3 is to the right of 1 by 5 meters, or more formally

∆x31 = ∆x32 + ∆x21 (one dimension)

However, even in this case there seems intuitively to be a difference between time and
space: somehow, “later” and “earlier” seem more fundamental categories than “to the
right of” or “to the left of”! This may be because by changing our point of view (i.e.,
moving in real 3-D space) we can reverse the “left-right” distinction, whereas no such
reversal seems possible for the “earlier-later” one. But this already indicates that it is
essential to generalize the notion of space coordinates.

The world we live in is three-dimensional (or at least appears to be so!). This is
equivalent to saying that we need three independent numbers to specify the position
of an event. At this point it is convenient to proceed in a different order from that
used above for the time, and already define an origin of space coordinates. Just as
in the case of time, this is purely conventional; geographers generally use the North
Pole, but for local purposes in Urbana the “conventional” choice is the intersection
of Race and University. Having chosen our origin, we now set up a “grid”, that is a
set of imaginary rods parallel to three mutually perpendicular directions. What do we
mean when we say two direction are “mutually perpendicular”? We can define this by
drawing a circle and dividing the circumference into four equal parts with marks; the
lines from the center to two neighboring marks then define mutually perpendicular axes.
An apparently equivalent alternative definition is via Pythagoras’ theorem: two axes
are mutually perpendicular if and only if, when we construct a triangle by taking unit
intervals along the two axes, the length of the hypotenuse is

√
2. (Actually, as we shall

see when we come to general relativity, the two definitions are equivalent in general
only under the assumption that the geometry of space is “Euclidean”; fortunately, even
in general relativity this is true in the limit is infinitesimal triangles). The “absolute”
orientation of the three axes, as distinct from their mutual perpendicularity, is a matter
convention: in ordinary life, one usually chooses one axis to be vertical (i.e. parallel to
the local gravitational field) and the two horizontal ones to be north-south (N-S) and
east-west (E-W).

Having chosen our standard ruler and origin and set up our “grid”, we now define
the space coordinates x, y, z, of a given event simply as the number of standard rulers
we need to place along each (arbitrarily labeled) axis to reach from the origin to the
event in question. Thus, for example, if we choose our origin at ground level at the in-
tersection of Race and University and arbitrarily choose x as the “N-S” coordinate, then
the “event” which is taking place in this lecture room now would have space coordinates
approximately given by

x = −500m, y = −1500m, z = −5m

Note we still have additivity for each of the coordinates separately (e.g. if 1 is 2m W of
2 and 2 is 3m W of 3, then irrespective of their N-S and vertical coordinates 1 is 5m W
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of 3!) i.e. we still have equation (∗) and also

∆y31 = ∆y32 + ∆y21, ∆z31 = ∆z32 + ∆z21.

However, let’s consider the total distance ∆Sij between two events (or for that matter
two points), assuming for simplicity that they are both on the earth’s surface so that
∆zij = 0. We have by Pythagoras’ theorem

∆Sij =
√

(∆xij)2 + (∆yij)2

and it is easy to convince oneself that ∆Sij does not satisfy the additivity relation (e.g.
if Loomis Lab is 500m from the Union and the Union is 500m from the Library, it does
not follow that Loomis is 1000m from the Library-this would be true only if the three
buildings were in a straight line).

Choice of Reference Frame

So far, so good; the definition of the space coordinates of simultaneous events appears to
involve no particular difficulties. But what about events which occur at different times?
So long as we are content always to refer events to the same reference frame (e.g. that
whose origin is fixed at ground level, at Race and University, with axes vertical, N-S and
E-W) we can proceed just as above and there is no extra difficulty. However, there are
cases in which we may not wish to do this.

Imagine a train raveling at a constant velocity† (speed) v, and a passenger who drops
two stones successively at an interval of ten seconds from the same window. How will
these two events be described (a) by an observer at the side of the track, and (b) by the
train passenger himself?

(a) The observer at the side of the track will say “The first stone was dropped at
12 o’clock at this crossing; the second stone was dropped at 10 seconds past 12 o’clock,
some distance up the line”. How far up? Well, if for example the train is traveling at
30m/sec, then it will be 300m up. More generally, the distance between the two events
as measured by a “ground” observer (call it ∆xgr) will be

∆xgr = (distance moved by the train relative to the ground) = v∆t

where ∆t is the time interval between the two events. (b) One the other hand, the
natural frame of reference for the passenger himself is that fixed on the train, i.e. he will
say (unthinkingly, perhaps) “I dropped stone 1 at 12 o’clock, and stone 2 ten seconds
later, from the same point”. I.e. the distance between the two events as measured by
someone on the train, ∆xtr, is simply zero.

More generally, suppose the passenger had walked a distance ∆x (say 10m forward
up the train between dropping the stones. Then obviously we will have

∆xtr = ∆x (= 10m)
†What exactly, does this mean? We can, if necessary, define velocity by the ensuing argument, see

below. For the moment we will take the concept as intuitively obvious.
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whereas the observer on the ground will now say that the distance ∆xgr between the
two events is 300m+10m=310m. More generally we have

∆xgr = ∆xtr + (distance moved by the train)

and it is clear that this formula is valid whether or not the train is moving with constant
velocity. Suppose it is, then we have

∆xgr = ∆xtr + vtr∆t (vtr = constant)

Note that we can now, if we wish, as it were reverse the argument and define the velocity
of the train vtr by the statement that if ∆xtr = 0 (stones dropped from the same window),
then vgr ≡ ∆xgr/∆t. (cf. last lecture.)

It is clear that this argument is a very general one and it applies to any two observers
who are moving with constant relative velocity: If A is moving with constant velocity
v relative to B, and we denote quantities as observed by A by unprimed symbols and
those observed by B by primed ones, then we have quite generally

∆x′ = ∆x + v∆t.

Note carefully that it is implicit in the argument that both observers measure the same
time interval between the events, i.e., formally (and apparently trivially!)

∆t′ = ∆t.

The transformation between frames of A and B given by the two boxed equations is
called a Galilean transformation.

One immediate and apparently trivial consequence of the above arguments, is the
additivity of velocities (or more precisely components of velocity).‡ It is more or less
intuitively obvious that if the train is traveling at 30m/sec, and I walk forward along
the train at 1m/sec, then the observer on the ground sees me traveling at 31m/sec.
More generally and formally: Suppose that a given body (e.g. me) is present at two
events (e.g. the two stone droppings). We can then define my velocity as seen by a
particular observer as the ration of the space interval ∆x measured by that observer
to the time interval ∆t measured by him. But, from the Galilean transformation, the
relation between the rations seen by the “primed” and “unprimed” observer is

∆x′

∆t′
≡ ∆x′

∆t
=

∆x + v∆t

∆t
=

∆x

∆t
+ v

i.e. my velocity as seen by B is that seen by A plus the velocity of A relative to B, or

vB = vA + vArel toB.

Note that this relation applies to the different components of velocity. It does not in
general apply to the total velocity; e.g. if a boat is traveling at 4 mph relative to shore,
and I walk at 3 mph across the boat, my velocity relative to the shore is not 7 mph
(actually in this particular case it is 5 mph by Pythagoras’ theorem).
‡That it did not seem “trivial” to all of Newton’s contemporaries is indicated by the fact that he felt

it necessary to spend some time on this point (Principia, p. 7).
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Galilean Invariance

We now return to Newton’s laws, taking for granted (a) the definition of a common
“time” which can be agreed upon by all observers, and for the moment also (b) that we
have an independent criterion (independent, that is, of the laws themselves) of when the
external forces are acting or not. (E.g. with a good approximation we can assume that
for a puck moving horizontally on smooth ice, there is no appreciable horizontal force).

For a body whose mass is constant in time and on which no external force acts,
Newton’s first law simply states

velocity = constant.

But we didn’t yet specify our reference frame! In fact, the velocity will be different as
viewed from different frames. However, it is easy to see that as long as those frames are
moving uniformly with respect to one another, this doesn’t matter. Recall the result

vB = vA + vArel toB

Suppose then that the velocity seen by A is constant, and moreover A is moving uniformly
relative to B, i.e. vArel toB = const. Then it immediately follows that B also sees a
velocity which, though different from that seen by A, is also constant. Thus, if Newton’s
first law is valid in some frame of reference S, then it is also valid in any other frame
moving with constant velocity relative to S, i.e. related to it by a Galilean transformation.
Thus, the first law defines not a single unique reference frame, but a class of frames,
which we call inertial. We postpone for a moment the question of what exactly it is
which picks out the class of inertial frames.

It is now immediately clear that not only Newton’s first law but also his second is
invariant under Galilean transformation. If we assume that the mass of the body in
question is constant (true in the overwhelming majority of cases of practical interest),
then N2 can be written

acceleration ≡ ∆v

∆t
=

applied force
mass

(?)

Now from the above relation (?) the changes over the time interval ∆t of the velocity as
seen by different observers are related by

∆vB = ∆vA + ∆(vArel toB)

However, if A is moving uniformly relative to B the last term is by definition zero, so
∆vB = ∆vA and the acceleration seen by B is the same as that seen by A. Thus, if
Newton’s second law is valid in some frame S, it is equally valid in any frame related to
S by a Galilean transformation; thus N2, like N1, defines a class of frames. Since N1 is a
special case of N2, the class so defined must be the inertial frames. Notice however that
there is a crucial assumption implicit here, namely that the applied force seen by A is the
same as that seen by B. For forces of the type given as examples by Newton (percussion,
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air pressure . . . ) this assumption gives rise to no particular difficulty; electromagnetism,
as we shall see in lecture 10, is a different matter.

Finally, let’s consider Newton’s third law: if the masses of the bodies involved are
constant, then this can be written (∆v now indicates the change in velocity either over
a given time interval, or in a complete collision)

m1∆v1 = −m2∆v2

Because ∆v1 and ∆v2 (as distinct from v1 and v2 themselves) are unaffected by Galilean
transformations, this means that if N3 is valid in a frame S then it is valid in any frame
moving uniformly with respect to S. Again, for consistency it is necessary to choose the
class of frames as defined as the inertial frames.

Thus, the laws of nature (N1-3) look the same in all inertial frames. This doesn’t of
course mean e.g. that we can’t tell whether we are moving with respect to the earth (we
can tell this not only by direct inspection but by effects such as air resistance etc.), but
it does mean that when this kind of possibility is shut off, as in Galileo’s “ship’s cabin”
though-experiment, there is no way of telling. On the other hand, if the frame is not
inertial (e.g. is rotating) we can most certainly tell: try walking across a merry-go-round!

What exactly is it that makes a particular class of frames the “inertial” frames?
According to Newton, it is because there is a particular one of the inertial frames which
is that of “absolute space”, while later Mach suggested that the inertial frames are
defined by the mean behavior of the matter (i.e. stars, etc.) in our neighborhood in the
universe. Since Newton believed that the fixed stars are at rest in absolute space, the
outcome is the same. More on that later... (Newton’s bucket: Weinberg’s “pirouette”).

Are Newton’s Laws Definitions of Force?
(Hesse, pp. 134–143)

There are two obvious possibilities.

(a) Suppose that we regard the existence of an externally applied force (e.g. muscular
or elastic) as something recognizable independently of its accelerating effect. Then,

1. if the forces in question are between different bodies, then N3 is independent
of N1 (which does not by itself state that the total momentum of a system of
(interacting) bodies is conserved); thus, N3 has to be regarded as an empirical
statement.

2. as regard different parts of the same body (on which no external forces act),
N1 as applied to that body implies that N3 applies to interactions (if any) be-
tween the parts (otherwise the body as a whole would accelerate even though
no externally applied forces act on it, contrary to N1).

(b) Alternatively, we can regard N1 (and N2) as definitions, i.e. any acceleration is to
be automatically regarded as evidence for the existence of force. In this case it
is an empirical fact that not only systems of bodies but also single bodies whose
parts are interacting satisfy conservation of total momentum, i.e. that N3 applies.
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Hesse (loc. cit.) argues that Newton took viewpoint (b): for our purposes (a) is more
convenient. If so, then clearly we need (inter alia) to ask: “What is the (identifiable)
force that is responsible for the vertical acceleration of bodies on earth, and for the
acceleration of the planets?” i.e. we must postulate a gravitational force.

The Gravitational Force and Action at a Distance

The feature of Newton’s mechanics which both he and his contemporaries liked least
was that the gravitational force is supposed to act at a distance, and moreover instan-
taneously. The whole idea of action at a distance, instantaneous or not, was strongly
resisted by 17th century thinkers; it was associated in their minds with “occult proper-
ties”, and where such effects seemed to be indubitably observed, as in magnetism, people
went to extreme lengths to try to provide a “local” physical mechanism (i.e. one which
worked by contact-cf. Aristotle!), e.g. Descartes with his “vortex” theory.

Newton himself certainly didn’t believe in action at a distance:

“It is inconceivable, that inanimate brute matter should, without the media-
tion of something else, which is not material, operate upon, and affect other
matter without mutual contact . . . . And this is one reason, why I desired
you would not ascribe innate gravity to me. That gravity should be innate,
inherent, and essential to matter, so that one body may act upon another,
at a distance through a vacuum, without the mediation of anything else,
by and through which their action and force may be conveyed from one to
another, is to me so great an absurdity, that I believe no man who has in
philosophical matters a competent faculty of thinking, can ever fall into it.
Gravity must be caused by an agent acting constantly according to certain
laws; but whether this agent be material or immaterial, I have left to the
consideration of my readers.”

and the idea was severely criticized by others, e.g. by Leibniz.

“A body is never moved naturally, except by another body which touches it
and pushes it; after that it continues until it is prevented by another body
which touches it. Any other kind of operation on bodies is either miraculous
or imaginary.”

As late as 1730, Bernoulli won a prize from the (French) Academy of Sciences by ex-
plaining Kepler’s third law in terms of a “vortex” hypothesis. It was only in the late
18th century, as more and more successes of Newton’s law of universal gravitation were
chalked up, that people finally came to terms with the idea-only to have it shattered, as
we shall see, by later developments.

Determinism

Let’s first consider the motion of a single body in a situation when, given its position,
we know exactly the forces acting on it. Good approximations include the motion



PHYS419 Lecture 7 Philosophical Issues in Newtonian Mechanics 10

of a cannon ball fired from a gun (the force is simply the gravitational force in the
vertical direction due to the earth∗), or a planet moving around the Sun (the force is
the gravitational force due to the Sun, which as we have seen is in the direction of the
latter and proportional to the inverse square of the distance from it). Suppose that at
some initial time (call it ti) we know the exact value of the position of the body and
also the exact value of its velocity. For simplicity of notation only I shall consider a
one-dimensional motion, and therefore denote the position by xi and the velocity by vi.
Consider now the situation at a slightly later time, ti + ∆t (where eventually we are
going to let ∆t tend to zero). By hypothesis we know the force Fi acting on the body
at point xi and if ∆t is small enough it will still be very close to xi at ti + ∆t, so we can
write that the acceleration over the time interval ∆t is approximately

ai = Fi/m

But acceleration is just rate of change of velocity, so the change in velocity over the time
interval ∆t is just ai∆t, and so at ti + ∆t we have

vi(ti + ∆t) = vi + ai∆t = vi + (F/m)∆t

and is exactly known (in the limit ∆t → 0 when the approximation becomes exact).
What about the position? Since the velocity averaged over the interval ∆t is close to
the initial one vi, we have approximately for the position at time ti + ∆t

x(ti + ∆t) = xi + vi∆t

and again is exactly known. In other words, in the situation considered
If we know the position and velocity of the body exactly at time ti, then (in the limit

∆t→ 0) we also know it exactly at time ti + ∆t
It is clear that we can now iterate this argument, and thereby reach the conclusion:
If we know the position and the velocity at some initial time ti, then we know it at

all subsequent times!
If this theorem applied only to single bodies like the cannon ball or the planet, it

would perhaps not be very interesting. But it is easy to see that it also applies to an
arbitrary collection of bodies (provided that not only the external forces but the forces
acting between them are exactly known), and moreover in 3 dimensions just as well as
in one: So under the same conditions:

Complete knowledge of the positions and velocity of all the particles of the system at
an initial time ti determines the complete behavior at any later time.

Does this mean that the past uniquely determines the future (but not vice versa)?
Well, yes and no! We can just as well run the argument backwards: if we know the
values xf and vf of position x and velocity v at some “final”time tf , then we equally
know them at a slightly earlier time tf −∆t, and so on to an arbitrary previous time.
Again, if we know them at some intermediate time, we can determine both the future
∗For the moment we will neglect the frictional resistance due to the air, although we shall have to

return to this question in a later lecture.
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and the past behavior. In fact it even turns out (though this is less obvious) that if
we know just the position of the body at any two different times, we can determine
the complete behavior. [For cognoscenti only: what we are saying here is that since
Newton’s second law is second order in time, any two independent pieces of information
suffice to determine the complete solution.] Again, these statements generalize to an
arbitrary collection of bodies and to 3 dimensions.

So, does the past determine the future? Or the future the past? Or . . .


