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General relativity: Equivalence principle and space-time
curvature

The origins of general relativity can be traced to two considerations that were well-known
to Galileo 300 years earlier, but for 250 or so of them do not seem to have been regarded
as worthy of special attention:

(1) (In the absence of air resistance, etc.): All bodies, irrespective of their weight,
composition, shape etc., fall at the same rate in a gravitational field (inertial mass
= (passive) gravitational mass: compare the Eötvös and “5th-force” experiments).

(2) There exists (in both Galilean mechanics and special relativity) a “special” class
of reference frames, namely the inertial frames.

Before special relativity, in the latter half of the nineteenth century, Ernst Mach took
the second point seriously and asked: What makes the “special” class of inertial frames
special? Weinberg’s “pirouette” experiment and Newton’s “bucket” experiment both
demonstrate that there does appear to be something “special” about the frame in which
the so-called “fixed” stars appear to be at rest. However, Mach objected that no one
really knew what would happen, if in the latter, the thickness of the walls of the bucket
were increased to several kilometers: “no-one is competent to say. . . ”. He postulated
that inertial frames are determined by the rest frame of the (local) matter of the universe
(“Mach’s principle”) .

Connected with this is the so-called “principle of gravitational induction”. Circulat-
ing electric currents produce a magnetic field, which “favors” rotation in the sense that
the magnetic force can be removed by going to a rotating frame. Can we do the same for
gravity? The gravitational force between two static bodies (the analog of the Coulomb
force in electromagnetism) has the form Fstat = G m1m2

r212
: suppose there also exists the

analog of the Ampere force between currents, i.e., Fdyn = G m1m2

r212

v1v2
c2

.
Now, we know that in a rotating system of coordinates (e.g., on a merry-go-round)

there exists, in addition to the “centrifugal” force, a “Coriolis” force proportional to
velocity:

FCor = 2mωv

where ω is the angular velocity of rotation; this Coriolis force is in a direction perpendic-
ular both to the axis of rotation and to the velocity. Is it possible that this is just Fdyn in
disguise? Well, suppose that in the formula for Fdynthe subscript 1 refers to “us” (i.e., a
massive object on Earth) and 2 refers to the fixed stars, and we assume for the moment
that we are at their “center”; then, if we go into a frame of reference rotating with
angular velocity ω, the fixed stars will appear to move with respect to us with velocity
v2 = ωr12 where r12 is some kind of average radius. Hence the “gravito-magnetic” force
Fdyn would be given (at least in order of magnitude) by

Fdyn ∼
Gm1m2v1ωr12

r212c
2

=
Gm1m2v1ω

r12c2
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In the same notation the Coriolis force is (leaving out the 2)

FCor ∼ m1v1ω

So if the two are to be equal we must have

Gm2

r12c2
∼ 1.

But to the extent that we can define the “radius” R ∼ r12 of the Universe, its mass m2

is ∼ ρR3, where ρ is the average mass density; hence we would predict that

GρR2/c2 ∼ 1

Remarkably, the cosmological evidence does seem to suggest that to the extent that R
can be defined (cf. lecture 26) this is about right (to an order of magnitude!). The
direction of Fdyn is also that of FCor (though this may not be immediately obvious).

Einstein postulated: No mechanical experiment in a freely falling elevator can reveal
the fact that it is falling rather than floating freely in space in the absence of gravity.
Alternatively, one can consider the “box-with-rope” experiment (Einstein p. 66): an
inhabitant of the box will experience the acceleration as equivalent to a gravitational
field.

Generalization: All physical phenomena in a freely falling frame are identical to what
they would be in free space (”equivalence principle”). Conversely, all (local) effects of
acceleration can be attributed to a gravitational field. Thus, the role of inertial frames
in special relativity is replaced by freely falling frames in general relativity. (Note: it
is not trivial, but nevertheless true, that any “smooth” local frame can be transformed
into a freely falling one).

So the prescription is: to work out how things happen locally, go over to a freely
falling frame, do the calculations as in Minkowski space, then transform back to the
original frame!

Immediate applications:

• Gravitational redshift.

Imagine a source B, emitting some kind of periodic signal (one usually thinks of
a light wave, but it need not be), which is picked up by A who is sitting in a
gravitational potential which is higher by an amount g∆h. Suppose A is using
a standard “clock” (e.g., a cesium atom) and B compares the frequency of the
signal as reported to him by A with that of his own exactly similar standard clock.
Obviously, if no gravitational field were involved they should see the same.

To find the correct result we must visualize the situation as viewed by a freely falling
observer. He sees A and B accelerating upwards with acceleration g. Suppose we
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A

B

arrange (as we certainly can) that he is stationary with respect to B at the moment
B emits the signal. Then if the signal is received (according to him) by A at a time
∆t later, by that time A will be moving upwards with velocity v = g∆t, and hence
will see the signal Doppler-shifted downwards in frequency by an amount which
(for v � c) is −v/c = −g∆t/c. Now if v is indeed � c, then ∆t is approximately
∆h/c, and thus:

∆ν
ν0
' −g∆h/c2 = −∆φ/c2

which is just the difference in gravitational potential divided by c2. So, A will see
the signal emitted by B “redshifted”.∗ This prediction has been verified, e.g., in
the Harvard Tower experiment (and also in astrophysics).

The general formula for the redshift, under conditions when the difference in grav-
itational potential φA − φB is not necessarily small, turns out to be

νA/νB =

√
1 + 2φB/c2

1 + 2φA/c2

I quote this result† without proof because it will be useful later.

• Bending of light (qualitative).

Imagine a source of light, a screen with a slit, and a fixed screen on which the light
is received, all inside an elevator. According to the principle of equivalence, if (and
only if) the elevator is in free fall, the light will appear to travel in a straight line,
i.e., it will traverse the spatial points S, B, C. But for an observer fixed on Earth,
these points at the times the light traverses them will not appear to lie in a straight
line: in fact, the light ray will appear to accelerate downwards, with acceleration
g! Thus, light should be bent in the field of massive bodies like the Sun. (This
effect was already predicted, on the basis of a “particle” picture of light, by Sollner
in 1802: but as we shall see there is a catch!)

∗Caution: This has nothing to do directly with the cosmological redshift.
†The alert reader will notice that if the difference φA − φB is small but φB is not itself small, this

result does not reduce to the one stated above. I hope to have time to discuss this; it is associated with
the question of the choice of an “absolute” zero for the gravitational potential.
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Digression:

Why are these effects not seen in everyday life? Answer: generally they are of order
φ/c2 which is small for any reasonable “everyday-life” situation (for the Harvard Tower
experiment [g ∼ 10 m/s2, ∆h ∼ 70 ft., c2 ∼ 1017 m/s], it is of order of 10−15!). The
predicted order of magnitude of the bending of light by the Sun is ∼ 1 second of arc.
One might reasonably ask what happens when φ/c2 becomes of order 1: see below.

Geodesics

A statement which is true for both massive bodies and light, in both Newtonian physics
and special relativity, is the following (Newton’s first law, plus):

As viewed from any inertial frame, a body on which no forces act travels in a straight
line with constant velocity; so does light. Special relativity adds the statement that the
velocity of light is always isotropic and equal to c.

A way of reformulating this statement, which at first sight (only!) looks rather ar-
tificial, is the following: define the (Minkowskian) space-time interval between any two
events in the standard way (for 3 space dimensions):‡

∆s =
√

∆x2 + ∆y2 + ∆z2 − c2∆t2

We know that this (the numerical value of ∆s2) is agreed upon by all inertial observers.
Consider now a body which starts at point (x1, y1, z1) at time t1 and ends at (x2, y2, z2)
at time t2, but can follow any path between these two spacetime points. Suppose it does
follow some convoluted path (I draw only the “space” part!) and break it up into small
parts of length of order ε: define a “total spacetime path length” as

∆s = lim
ε→0

∑
i

∆si, ∆s ≡
√

∆x2
i + ∆y2

i + ∆z2
i − c2∆t2i

Then the above statement of Newton’s first law is simply: The actual path followed
between spacetime points 1 and 2 is such that the total path length ∆s is a minimum
(such a path is called a “geodesic”). In addition, for light ∆s is zero.
‡It is conventional in GR to take the sign of ∆s2 (which is a matter of convention) to be positive for

spacelike intervals (contrary to the convention used in lecture 12).
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Let’s verify that this does give back Newton’s first law. First, assume that we “forget
about” the time variable: then we simply have to minimize the actual path length in
space between the two points. But the shortest path between two points in (Euclidean)
space is precisely a straight line! Hence part (1) of Newton’s first law follows, and we
have (e.g., in two dimensions) simply

∆yi = const · ∆xi

When we know x1, y1 and x2, y2, the constant is of course uniquely determined as (y2 −
y1)/(x2 − x1).

To investigate the second part, let’s assume we choose our coordinate system so that
motion is only in the x direction. Then, we have

∆si =
√

∆x2
i − c2∆t2i

This expression differs from the “Pythagorean” one only by the factor of c2 and the −
sign: both can be formally removed by defining a “pseudo-Euclidean” coordinate τ ≡ ict,
so ∆si =

√
∆x2

i + ∆τ2
i . It is then clear from the analogy to ordinary Euclidean space

that the optimum path is the “straight line” ∆x = const ∆τ or ∆x = another const. ∆t,
i.e.:

(x2 − x1) = const (t2 − t1) ≡ v(t2 − t1)

which is just the statement that the body moves at constant velocity. In the special case
of light (in special relativity) we know that this velocity has to be c, and we therefore
recover the result ∆s = 0.

So far, so good: we have really learned nothing we didn’t know. But we note a great
advantage of the “geodesic” formulation: it is totally independent of what coordinate
system we choose to employ! (we can not only use different inertial frames, but having
chosen a frame can use, e.g., spherical polar coordinates instead of Cartesian ones). Thus,
we can for example choose to use the frame of reference appropriate to an observer who
is stationary on the Earth’s surface. This is not a freely falling frame, and hence we
expect that in general the trajectories of “free” (i.e, not acted on by any nongravitational
forces) bodies would not be straight lines and/ or would not be traversed at constant
velocity: this is, of course, what we observe. However, the Minkowskian expression for
the space-time interval, ∆s2 = ∆x2 − c2∆t2, automatically leads to linear motion with
constant velocity: thus, the expression for the interval in this noninertial frame must be
non-Minkowskian.
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If the general expression for the metric (spacetime interval) is to scale linearly with
the space and time dimensions, it must be bilinear in ∆x, ∆y, etc., i.e., ∆s2 should
involve only terms like ∆x2, ∆y2, ∆x×∆y. . . (each possibly multiplied by some function
of space and time). Since the horizontal motion is not affected by a gravitational field, it
seems natural to assume that the corresponding part of ∆s2 is unchanged from its simple
Minkowskian form ∆x2 + ∆y2. This leaves the possibility of terms proportional to ∆z2,
∆t2, and ∆z ×∆t; however, the last can be excluded by considerations of time-reversal
invariance. Thus, since the situation is independent of the x and y coordinates and of
time, the most general expression we are allowed to have is

∆s2 = ∆x2 + ∆y2 + f(z)∆z2 − g(z)c2∆t2

where f(z) and g(z) are for the moment arbitrary functions of z. Now, the redshift
experiment (or the associated “GR twins paradox”) will allow us to infer the form of
g(z); however,considerable caution is necessary, and it is easy to reach a qualitatively
wrong result: suppose that the gravitational field actually falls off with z (as is in fact
the case for a finite body like the Earth), so that “at infinity” we can take it (and
the gravitational potential) to be zero. Imagine a twins-paradox thought experiment in
which Alice and Barbara both start “at infinity” and Alice stays there throughout, while
Barbara travels to a point low gravitational potential φ(z) < 0, spends a substantial time
there, and eventually returns to join Alice. Inverting the frequency ratio obtained above,
we see that the time intervals between events in Barbara’s region (such as the flashes
emitted by her flashlight), as estimated by Alice (A) and Barbara (B), have the relation

∆A =
∆B

(1 + 2φ(z)/c2)
1
2

Now comes the tricky point: which of the two (if either) is an inertial observer and
therefore entitled to treat the time interval she observes as the true space-time interval
(note both agree that ∆z is zero)? It is at first sight tempting to argue that since Alice
is stationary in an inertial frame (as no gravitational field exists in her region), while
Barbara is not “freely falling” in the nonzero gravitational field that exists in her region,
Alice is an inertial observer and Barbara is not. But this is wrong ; we are discussing
what happens in Barbara’s region, so that it is the gravitational acceleration there that is
relevant, and Alice is certainly not falling freely with that! On the other hand, somewhat
surprisingly, for the purposes of calculating time intervals (only), Barbara can be treated
as an inertial observer! To see this, imagine a freely “falling” (i.e., accelerating) observer
whose initial upward velocity makes him exactly coincident with both flashes. The
true space-time interval is just the time interval as measured by him – but, since he sees
Barbara moving, first downward then upward, by symmetry, this is just the time interval
measured by her!§ Thus, it is Barbara’s time that is the “proper” time – i.e., apart from
§At first sight this argument might seem inconsistent with that used in the discussion of the special-

relativistic twins paradox, where clearly it matters that one twin is accelerating relative to an inertial
frame. However, the needed velocity of the inertial observer here is proportional to ∆t, while the SR
time dilation effect is of order velocity2, so that by taking ∆t small enough, the latter can be made
negligible.
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trivial factors, the true space-time interval (and so the lack of aging by Barbara, whose
biological clocks presumably go by proper time, is a real effect, just as in the SR twins
paradox). Further, since the above formula for the spacetime interval is that which has
to be used by Alice, the ∆t in it is ∆tA. Putting these considerations together, we find

g(z) = 1 +
2φ(z)
c2

i.e.,
∆s2 = ∆x2 + ∆y2 + f(z)∆z2 − (c2 + 2φ(z))∆t2

We do not yet know what f(z) is: let us for the moment tentatively set it equal to 1.
A standard variational calculation¶ then shows that provided |φ(z)| � 1, an observer
using this expression and requiring that ∆s be a minimum will indeed see the trajectories
predicted by “Newtonian gravity”.

Now, it might be objected that all of the last two pages is a sledgehammer to crack a
nut. After all, in this case it is perfectly straightforward to transform to a freely falling
frame (which is the same everywhere in space), simply posit that in this frame free
bodies move in straight lines, and then transform back to the frame of the stationary
observer. To see the advantage of the “metric” (or “geodesic”) formulation we have
to consider a somewhat more complicated problem, e.g., the gravitational field of the
spherical earth. Since the direction of the gravitational acceleration is different in Tokyo
from that in Champaign-Urbana, it is clear that it is impossible to transform globally
to a single freely falling (inertial) frame, and thus we would expect that there exists no
frame in which motion is globally in a straight line. We must then use the more general
expression, with φ(z)→ φ(r) = −GM/r. This begins to suggest that space-time might
be “intrinsically curved”.

 
 
 
 
 
 
 
 
  

Digression on curved space (–time)

We know that the three-dimensional space around us is (at least to a very good ap-
proximation) Euclidean. But imagine for a moment that we were ants crawling on

¶Which, however, requires more math than assumed in the course.
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the two-dimensional surface of a spherical football (soccer ball), and had no means of
knowing about the direction perpendicular to the surface. We would then measure all
distances as “distances traversed along the surface”, and we could find a number of
“non-Euclidean” features:

1. The angles of a triangle need not add up to 180◦ (consider, e.g., a triangle based
on the North Pole and the Equator).

2. The circumference of a circle is in general less than 2π× its radius.

3. More than one “straight line” can be drawn through the same two points.

4. The space is in an obvious intuitive sense “closed” (in fact its area is 4πR2, though
the ants would not know that R is a “radius”).

5. “Parallel transport is nontrivial”: if, e.g., I start from the North Pole, carrying a
stick that always points in the some direction as viewed in the local coordinate
system (e.g., always points south), walk as far as the Equator, turn east and go
along the Equator for a few thousand miles, then turn back north and return to
the North Pole – is the direction of the stick the same as it started?

 

Now of course we know, though the ants don’t, that the two-dimensional surface is
“embedded” in a three-dimensional Euclidean continuum. But, in fact, it is possible to
describe the “intrinsic” properties of the surface independently of this knowledge; the
ants could infer everything about it by making sufficiently careful measurements, and
indeed there are some two-dimensional ”surfaces” that cannot be embedded in Euclidean
space. So the questions are: is our “four-dimensional” space-time in some sense “curved”,
and if so, what is it that determines the degree and nature of the curvature?

Einstein’s answers were as follows: (1) yes; (2) the presence of mass. In fact, in a
frame of reference where all mass is stationary, one can say crudely that

curvature is proportional to mass density

It should be emphasized here that the “curvature” that occurs in this statement is the
appropriately defined curvature of four-dimensional spacetime. Thus, this is non-zero
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inside (e.g.) the Earth (mass density 6= 0), but zero in the free space outside. It then
turns out (lots of math!) that this determines the function f(r) to be the inverse of
g(r); that is, the correct expression for the metric outside a spherical massive body as a
function of r (independent of t!) is‖

∆s2 = ∆s2⊥ +
(

1− 2GM
rc2

)
c2∆t2 − ∆r2

1− 2GM
rc2

– the famous Schwarzschild metric. Note that the (appropriately defined) four dimen-
sional curvature of this metric is zero. However, let us consider the three dimensional
space obtained by “slicing” at a definite time (for the observer in question) (i.e, consid-
ering events with ∆t = 0). It turns out that this three dimensional space does have a
finite curvature! This is no different from the fact that in “everyday life”, while ordinary
three dimensional space is (very nearly) Euclidean (zero curvature), the two dimensional
subspace corresponding to a “slice” at r = const (e.g. the surface of a football) has finite
curvature.

Some consequences of the Schwarzschild metric:

1. Bending of light in the field of the Sun (the result turns out to be a factor of 2
times the result of the “näıve” (Sollner-type) argument). This was verified in the
famous Royal Society expedition to West Africa to observe the 1919 eclipse.

2. The precession of perihelion of Mercury (space curvature contributes 1/2 of the
effect of the redshift).

3. Effects in radar echoes between planets.

One obvious question: What happens if we have so large a mass, in so small a radius,
that 2GM/rc2 = 1 (so that the redshift becomes “imaginary”)? Answer: a black hole!

Application to cosmology: Suppose the Universe is filled with some kind of matter
whose average density, in its rest frame, is ρ. Then at “radius” R we have 2GM/R =
(8π/3)GρR2 ≡ Ω. It looks, therefore, as if it ought to “matter” whether the actual
“radius” of the Universe∗∗ is such that this parameter is greater or less than 1. In fact,
this is true: in the simplest model of the Universe (the so-called Friedmann-Robertson-
Walker model, see lecture 26), we have the following situation.

Ω < 1: the Universe is a space of constant negative curvature, and is infinite (“open”
Universe).

Ω = 1: the Universe is a space of flat space-time, infinite (“flat” Universe).

Ω > 1: the Universe is a space of constant positive curvature and is hence the three di-
mensional analog of a spherical surface (“closed” Universe).

‖Here ∆s2⊥ the “distance on the surface of the sphere” (technically, in spherical polar coordinates we
have ∆s2⊥ = r2(∆θ2 + sin2 θ∆φ2)).
∗∗Or more generally the “scale factor” (see lecture 26).
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What is the experimental value of Ω? See lecture 26.
Finally, a note: If the mass is stationary, the freely falling bodies have no “rotation”.

However, if the mass is rotating, in general they do: there is a tendency to “drag”
projectiles into rotation though it is generally not complete. (More in the next lecture.)


