
PHYS419 Lecture 24 – The Advantages of Ignorance: Statistical Mechanics 1

The Advantages of Ignorance:

Statistical Mechanics

With the exception of a few “asides” (about Brownian motion and so on), just
about everything that we have discussed in this course so far has rested on the
implicit assumption that we have complete information about the system(s) to
which we are about to apply the relevant physical laws, or at least complete in-
formation for the purposes at hand. For example, when applying Newton’s laws
to the motion of the planets, we assume that we know, or can find out, to any
desired degree of accuracy, their current positions and velocities (and can later
remeasure these quantities to check our predictions). Of course, there is great deal
about the planets we may not know (and certainly Newton did not know) – e.g.,
their chemical compositions, whether they are inhabited by intelligent beings, and
so forth; however, this does not matter in this context, because we believe that
these unknowns are irrelevant to a prediction of the motion of the planets in the
gravitational field of the Sun. Similarly, in dealing, à la Galileo, with the motion
of, say, a cannonball here on Earth, we do not need to know the detailed config-
uration of each of the atoms composing it (indeed, even gross properties such as
chemical composition and overall shape are relevant only to the extent that they
influence the effects of air resistance, etc.). Again, in the discussion of special
and general relativity, it was only certain very general properties of “events” that
played a role: phenomena such as the Doppler effect and the gravitational red-
shift are completely independent of the detailed nature of the source emitting the
radiation! When we come to quantum mechanics, the question of “complete infor-
mation” takes on a rather different aspect; according to the usual interpretation
of the theory, the most complete information we shall ever in able to get about
the individual system is encapsulated in the state vector (wave function) of the
ensemble from which that system is drawn. Unlike the case of classical physics,
this “complete” information does not permit the prediction with certainty of the
outcome of arbitrary subsequent measurements we may make on the system, but
within the usual framework it is nevertheless the best we will ever be able to
do, even in principle. In discussing the quantum theory we have almost always
assumed, explicitly or otherwise, that we do in fact possess a knowledge of the
state vector of an appropriate ensemble from which the system can be regarded
as drawn. (E.g., in the Schrödinger’s cat thought experiment as we presented it,
we assumed that the “triggering” electron is drawn from an ensemble collimated,
monochromated, etc., in a given way.) Thus, there is, as it were, nothing further
for us to be ignorant of.

In most real-life applications of physics, however, “complete” information, ei-
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ther classical or QM, is the exception, and a certain amount of ignorance is the
norm. Let us, for example, consider a tray of water in the refrigerator and ask
how long it will take to freeze. Without any detailed theory of freezing, we at least
know that the water is composed of a very great number of H2O molecules, and one
would certainly imagine that the time in question might depend rather strongly on
their initial state. But we certainly do not know this state in detail: if we describe
them classically, we do not know the position and velocity of each molecule, which
is what is necessary for a complete specification of the initial conditions; and if
we describe them (as we in principle should) by QM, we equally certainly do not
know the appropriate state vector. In the context of this last remark, it should
be emphasized that in applying QM to real-life systems we are faced with, as it
were, two kinds of uncertainty. One, which we have already discussed in detail,
is associated with the very nature of QM, and in particular with its characteristic
“indeterminacy”: even if we have the most complete information we are ever al-
lowed to get, in the form of knowledge of the state vector of the relevant ensemble,
we still cannot necessarily predict with certainty the outcome of all measurements.
The second kind of uncertainty is as it were much more everyday: we simply may
not, in practice, know enough about the system in question to be able to assign it
reliably to a unique ensemble. In this case, all we can do is to state that with some
probability Pi it comes from an ensemble of type i and therefore has a state vector
|Ψi〉. (For example, we might have a photon that could have come from either of
two beams, one of which has passed through a horizontal polarizer and the other
through a vertical polarizer; in this case all we can say is that the photon either
has polarization | ↑〉 or polarization | →〉, with probability 1/2 each. This should
be carefully distinguished from the quite different statement that the photon has a
linear combination of the two polarizations, i.e., is described by the superposition
state 1√

2
(| ↑〉 + | →〉) ≡ | ↗〉.) This type of “ignorance” is not really in any way

peculiar to QM and has no spectacular (interference-type) effects.
In the first half of the nineteenth century, the science of thermodynamics was

developed in order to deal phenomenologically with situations, in particular in-
volving macroscopic bodies, where we do not have all the “relevant” information.
Later, it was shown how to relate the concepts of thermodynamics to a more
first-principles, “microscopic” picture: the resulting branch of physics is known as
“statistical mechanics”. In this lecture I shall first review classical thermodynamics
and then its statistical mechanical underpinnings.

In the course of this exploration, we shall run across one very striking difference
between thermodynamics and the other branches of physics we have looked at so
far: namely, while classical mechanics, special and general relativity, and even QM
(more on this later) are indifferent with respect to interchange of the past and the
future, thermodynamics seems to require and impose a definite sense of the “arrow
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of time” – there really is a difference between the past and the future. We will
explore the basis for this difference in the next lecture.

The experience of hot and cold is perhaps one of the most basic known to
humankind. With a little more sophistication, we form the concept of “equally
hot”, and eventually realize, perhaps with a little conscious experimentation, that
two bodies put in contact, but otherwise effectively isolated from the rest of the
world (e.g., the tea and the teapot, assuming that it is covered with a cozy!) end up
being “equally hot”. Rather than simply define “equally hot” on the basis of our
immediate perceptions (which could be rather dangerous, as the tea may actually
feel hotter than the teapot), we can define two bodies as equally hot, if, when they
are put in contact, neither gets any hotter or cooler. Being “equally hot” is what
logicians call a transitive relation: if A is as hot as B, and B as hot as C, then
A is as hot as C; this can be regarded as an experimental fact and is sometimes
called the “zeroth law of thermodynamics”. We can now say that any two bodies
that are equally hot possess the same value of some “physical” quantity that is
conventionally called the “temperature” and denoted T . Note that at the present
stage, this is just an abstract definition, and we have no idea how T is related to
the other, e.g., mechanical, properties of the body in question. Obviously, how we
actually assign a numerical value to T is somewhat arbitrary; we have possibilities
ranging from the degree of discomfort felt by our fingers to the height of column
of mercury to the volume of a constant-pressure gas thermometer. We will see
later that statistical mechanics provides a possible unique, if somewhat abstract,
definition. For the moment, it will be enough that higher values of T correspond
to our intuitive notion of “hotter”.

How does a body become “hotter” or “colder”? The most obvious way is
by being put in contact with another body that is at a given temperature and
transferring “heat” (as we would say in everyday life) to it. At first sight, this
looks very similar to the way in which, when we put a positively charged body in
contact with a negatively charged one, electric charge flows between them. It is
therefore, at first sight, tempting to regard “heat” as like electric charge – that
is, as a substance of which a body possesses a certain amount, so that the total
amount of “heat” is conserved. This view was popular in the eighteenth century,
and the substance in question was known as “caloric”. However, it had been known
qualitatively for a long time, and was verified quantitatively in a famous (cannon
boring) experiment by Count Rumford in 1796, that it is possible to raise the
temperature of a thermally-isolated body by doing mechanical work on it. Thus,
if “caloric” exists at all, it is certainly not conserved! In fact, a given amount of
mechanical work is always equivalent to the same amount of heat, irrespective of
the nature of the substance. A (thought!) experiment to demonstrate this might
go as follows: Suppose that when a given quantity of water at, say, 20◦C, and of
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brass at 50◦C, are put in thermal contact, they eventually come into equilibrium
(i.e., become “equally hot”) at 30◦C. By definition, the amount of “heat” lost by
the brass is equal to that gained by the water; thus, it will require an equal amount
of mechanical work (under ideal conditions, of course!) to reheat the brass to 50◦C
and to reheat the water to 30◦C after it has been recooled to 20◦C. Therefore,
heat and mechanical work are nothing but different forms of the same commodity
– energy! The only problem is that, because of the history, they are conventionally
measured in different units: work is measured in joules, but heat in calories – one
“calorie” being the heat require to raise the temperature of 1 gram of water by 1
degree, under specified conditions. The equivalence is: 4.2 joules equals one calorie.
(In everyday terms, this ratio is enormous, as anyone who has spent a night at an
Alpine hut above the snow line and tried to use mechanical work to convert snow
into drinking water knows!)

The equivalence of heat and mechanical work as different forms of energy, plus
the general principle (which we tend to believe on rather general grounds) that total
energy is conserved, constitute what is known as “the first law of thermodynamics”:
crudely speaking, “work + heat = constant”. E.g., if we imagine that we carry
a thermodynamic system (such as the freon in a household refrigerator) around a
cycle of operations, returning it at the end to its original state so that its total
energy is unchanged, then we know that the total heat input to the system over
the cycle must be equal to the mechanical work output (e.g., in the expansion
and compression of the gas); however, each of these quantities can be individually
nonzero (and must be if the refrigerator is to work!).

Nothing so far explains why heat tends to flow from a hotter to a cooler body
but not vice versa. Evidently, it would be nice if on a cold winter’s day we could
simply pull in energy, in the form of heat, from the outside air and use it to heat the
house! In fact, nothing in the first law of thermodynamics forbids us doing so, and
modern “heat pumps” do achieve this end. However, to do so they have to perform
mechanical work; if no such device is involved, we know very well that not only can
we not do this, but in fact the reverse will happen (the house, without continuous
input of heat from the furnace, will eventually cool to the temperature of the
outside air). Reflections on these and similar ”impossibilities” led Carnot, Clausius
and others in the early 19th century to arrive, by a series of very elegant arguments,
at the concept of entropy and the related second law of thermodynamics. The idea
is that in thermal equilibrium under specified conditions (given temperature, given
pressure, etc.), any physical system will possess not only a definite total energy
but also a definite value of another quantity, called “entropy” and usually denoted
S.∗ Although the “total amount of heat” possessed by the body is a meaningless

∗Like the energy (but unlike, e.g., the temperature) entropy is an “extensive” quantity, i.e.,
half the body has half the entropy (but not, of course, half the temperature!).
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concept (since heat alone is not conserved) the heat input ∆Q (which is well-
defined) can be related to the change ∆S of the entropy: if the input is gradually
done while the body is at a given temperature T and “nothing else” happens to
the system (e.g., no cannon-boring, etc.), then the relation is ∆S = ∆Q/T . The
second law of thermodynamics can be expressed in various forms that turn out to
be equivalent; in the present context, it is convenient to express it by the statement
that, for a thermally isolated system or set of systems (i.e., such that there is no
external heat input), the entropy can only increase or, at best, remain constant:
∆Stot ≥ 0. It is immediately clear how this principle ensures that the transfer of
heat will be from the hotter body to the cooler and not vice versa (assuming that
no third body is involved, as will be the case if a heat pump is applied). Suppose
bodies 1 and 2 are initially at temperatures T1 and T2, respectively, and are put
into thermal contact while thermally isolated from the rest of the world (e.g., tea
and teapot). Let ∆Q be the heat lost by body 1 and therefore gained by body
2; for the moment we allow ∆Q to have either sign. From the above we have
∆S1 = −∆Q/T , ∆S2 = +∆Q/T2, and hence the total entropy change of the two
bodies combined is ∆Stot = ∆Q(1/T2−1/T1). But the second law says that ∆Stot

must be ≥ 0. Since by construction, T1 > T2 and hence 1/T2 > 1/T1, it follows
that ∆Q must be positive – i.e., the heat flows from the hotter to the colder body.

In the above, we said that “the entropy must increase” (or at best stay con-
stant). Let’s make this more explicit. “The later the time, the larger the entropy
must be.” Thus, the second law (unlike the first) picks out certain times as “later”
than others; i.e., it defines an arrow of time. Processes that involve zero change
in total entropy are called “reversible”, others “irreversible”. Thus, as the names
imply, a reversible process can “go” in either direction (the statement “remains
constant” does not distinguish past from future!), but an irreversible thermody-
namic process can proceed only in one direction. Most of the physical processes
we observe in everyday life are irreversible, which is why we can usually tell when
the movie is being run backward!

Once we have the definition of “entropy” and the first and second laws, we can
derive a large number of results that are quite independent of the detailed nature
of the bodies under consideration (e.g., we can relate the compressibility, thermal
expansion and specific heat). If, further, we know the way in which the energy
and entropy depend on other “thermodynamic” variables such as temperature,
pressure, etc., we can do quantitative calculations and start building useful things
such as internal combustion engines, refrigerators, etc. This is the subject matter
of classical thermodynamics.

It is important to note that to do classical thermodynamics all we need to know
are a few macroscopic (and relatively easily measurable) properties of the system
(e.g., pressure, volume, temperature). The subject is therefore a completely self-
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contained one, and indeed in the late nineteenth century there were plenty of people
(including Mach, whom we have met before) who argued that there was simply
no need for any more microscopic basis for it. However, the majority of physicists
felt a certain discontent; while the first law could perhaps be understood at least
qualitatively if we were to identify the part of the energy called “heat” with random
motion of individual atoms/ molecules (which is on too small a scale to manifest
itself as macroscopic work), it remained a mystery why the second law holds and
in particular what the nature of the mysterious “entropy” is. This discontent
was (largely) removed with the development of statistical mechanics, to which I
now turn. I will frame the discussion primarily in terms of classical statistical
mechanics – i.e., a theory that assumes that the dynamics of individual atoms
obeys Newton’s rather than Schrödinger’s equation – and bring in the quantum
version only when it actually simplifies matters.

To illustrate the basic ideas of statistical mechanics, let’s start with a specific
example. Imagine that we have a very large lattice (N points) with one small
magnet (“spin”) on each site that can point only “up” or “down”. (This is actually
not a bad model of certain kinds of magnetic material.) A point that is very
crucial in our argument is that it is very unlikely that we shall be able to know
the direction of each individual magnet – in fact, it is obviously impossible to find
this by any macroscopic measurement. On the other hand, it may be quite easy
to find out the total magnetization M of the sample (i.e., the number of “up”
spins [magnets] minus the number of “down” spins), e.g., from the magnetic field
produced by it; it should also not be too difficult to find the total magnetization
of “sufficiently large” parts of the system. For definiteness, let’s divide the system
into two equal halves; we then assume we can measure M , and also M1 and M2 –
the magnetizations of the two halves – separately. Furthermore, let’s assume, for
simplicity, that the total energy is a unique function of M and that the system is
thermally isolated, so that its energy is fixed at a particular value; then M must
also have some fixed value, which for simplicity we choose to be zero. The question
is: given this information, what behavior do we predict for the “macroscopically
observable” quantities M1 and M2 (= −M1)?

It is clear that, since by hypothesis we are not allowed to know the behavior
of individual spins, any predictions we can make must be based on probabilistic
considerations. How can we apply probability theory to this problem? We must
first decide how to assign an a priori probability to each of the 2N possible con-
figurations of the N spins, or actually more precisely to that subset of them that
corresponds to M = 0 (since we already have this piece of information). At this
point, we remark that there is nothing that distinguishes any one configuration
physically from any other,† and then use the principle of indifference to argue that

†In a more realistic model, the energy is very likely to be different for different configurations,
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therefore, it is legitimate to assign exactly the some a priori probability to each.
Once we have made this crucial assumption, the rest of the calculation is in princi-
ple straightforward: it is clear that the probability of obtaining a given value of M1

(and hence the opposite value of M2) is simply the number of different configura-
tions with M = 0 that give this value of M1. In fact, it is clear that the problem is
exactly the same as the following one: given that in a long series of coin tosses the
total number of heads and tails is equal, what is the probability of getting more
heads than tails on the first half of the sequence (heads ⇒ spin up, tails ⇒ spin
down)? Without detailed calculation, we can see what the qualitative behavior
will be (cf. lecture 18): first, consider the probability of the “extreme” result that
M1 is simply N/2. For this to be so, all the spins on side 1 must be up, and there
is only one configuration corresponding to this arrangement. What about the case
M1 = N/2− 1? Now there are N/2 possible configurations, corresponding to the
different possible choices for the single “down” spin on side 1. (Similarly, on side
2 there are N/2 possible choices for the single “up”.) Thus, the total number of

configurations is (N/2)2. For M1 = N/2 − 2, there are
[
1
2
N
2

(
N
2
− 1

)]2
configura-

tions, and so on. It is intuitively plausible (and turns out to be true) that the
most probable value of M1 (and hence also of M2) is zero. It is somewhat less
obvious (but follows from a standard calculation) that the value of M1 for which
the probability falls to 1/2 of the maximum value is of order N1/2. Thus, we
would conclude that the most probable value of M1 is zero, and that the “fluctu-
ations” of M1 around this value, expressed as a fraction of the maximum possible
value N/2, are of order N−1/2 (compare lecture 18). Thus, in the limit N → ∞
(usually called the “thermodynamic limit”), the value of the macroscopic quantity
M1 is predicted to have a perfectly well-defined value (in this case, zero). Under
appropriate circumstances, this prediction is experimentally verified.

The method illustrated in the above “toy” problem can be generalized to any
problem involving a system thermally isolated from the outside world. In that
case, the energy is fixed, so one considers all those configurations that correspond
to the given value of the energy, asks how many correspond to a particular value of
the other ”thermodynamic” variables (e.g., pressure, voltage) one is interested in
predicting, and assigns a probability proportional to the number of configurations.
Quite generally, one finds that in the thermodynamic limit (size of system →∞),
the probability peaks very sharply about a particular value,‡ with fluctuations of
order N−1/2. Of course, the “counting” of the relevant configurations, and hence
the application of the principle of indifference, may not always be entirely trivial,
and sometimes in the last resort we have to fall back on quantum mechanics to
justify the counting method we believe (essentially on experimental grounds, as

but we have got rid of this complication by our assumption that E is a unique function of M .
‡Or, occasionally, two or more different values (the case of so-called “broken symmetry”).
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long as we stay with classical physics!) to be correct. But the basic principle is
just that illustrated above.

Suppose now that we have actually measured the value of M1 and found that
it is not the “most probable” value zero, but (say) is of order N/2. We would be a
little surprised, but might account for this result by, for example, the assumption
that our colleague had applied a magnetic field to side 1 (and an opposite one to
side 2) so as to orient the spins, and then turned it off just before we walked into
the room to do the measurement (cf. next lecture). We now suppose that we leave
the system to itself, and that the microscopic dynamics are such that the spins
can “flip-flop”, that is, exchange spin while conserving the total spin of the sample
(and hence, according to our model, the total energy: this is a not unreasonable
model for the dynamics of many magnetic systems). These “flip-flops” can recur
not only within regions 1 and 2, but also across the 1-2 boundary, in which case
they will obviously change M1. Under these circumstances, how do we expect the
quantity M1 to evolve in time?

Strictly speaking, the only totally rigorous answer to this question would be an
explicit calculation, either by hand or (more likely nowadays) by computer. For
such a calculation, we would need as input the exact dynamics, e.g., the prob-
ability of a flip-flop transition of each pair of opposite spins in the sample, etc.
Furthermore, we would need to do the calculations separately for each of the dif-
ferent states that could have given rise to the initially observed nonzero value of
M1, which, unless this value is very close to N/2, will be extremely numerous.
However, most physicists would probably have a very strong prejudice that unless
the dynamics, and/ or the initial state, is “pathological”, the system would even-
tually approach the value of M1 (in this case zero), which was indicated by the
original calculation based on “complete ignorance”, and then stay there. In many
relevant cases, that does seem to be the behavior that is observed experimentally.
(Cf., however, work of the last decade or so on “many-body localization”.)

Thus, at least so long as our system is thermally isolated, there seems to be
a characteristic of the macroscopic state (defined by the value of M1 and nothing
else) that is a maximum when we have no information about the system at all,
and that, when we start from a state not corresponding to the maximum, tends to
approach the state that does – i.e., tends to increase. This quantity is the number
of configurations that correspond to that value of M1. Now the (macroscopic)
second law of thermodynamics tells us that the entropy S tends, for a thermally
isolated system, to increase and thus to reach its maximum value. It therefore
becomes plausible to associate the thermodynamic concept, entropy (S), with the
statistical concept of the number of “available” configurations (W ), and in fact
this association lies at the heart of the discipline now known as “statistical me-
chanics”. However, it is clear that the entropy cannot be simply proportional to
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W , if for no other reason than that when the system is doubled in size without
changing, e.g., the mean magnetization, the entropy is doubled (see above) while
the number of available configurations is (approximately) squared. In fact, the
only law of association that will get this feature right is to make S proportional
to the logarithm of W :

S = kB lnW

(i.e., in our toy model S(M1) = kB lnW (M1)). The constant kB is necessary
because S has the units of energy/ temperature (∆S = ∆Q/T !); it turns out
to have the numerical value of 1.38 × 10−23 J/K, and is known as “Boltzmann’s
constant”.

Once we have the above “statistical-mechanical” definition of “entropy”, it is
relatively straightforward to derive the general formal results quoted in textbooks
of statistical mechanics; if we know enough about the dynamics of a specific sys-
tem, etc., we may also actually be able to calculate the entropy as a function of
energy, magnetization, etc., for this system. One important generalization should
be noted: we often want, in real life, to consider systems that are not thermally
isolated but are in contact with some thermal “bath” (i.e., a very large environ-
ment, such as Earth’s atmosphere, such that the effects of the system on it are
negligible). In general, what tends to be specified is not the energy of the bath
(which it can continually exchange with the system, under these “thermal contact”
conditions), but rather its “temperature”, and so we need to know how “tempera-
ture” is to be defined in a statistical-mechanical approach. It turns out that if we
define a quantity T by

T =
1

∆S/∆E

the quantity so defined has all the properties expected of the thermodynamic “tem-
perature”, and all the generic results obtained from statistical mechanics can be
put into exact one-one correspondence with those of thermodynamics. Whether
this means that thermodynamics is “equivalent” to statistical mechanics is a ques-
tion beloved of philosophers of science (cf., e.g., Sklar pp. 106-8).

One point about the above discussion of entropy cannot be overemphasized: it
makes no sense to talk about the entropy of a system if its exact microscopic state
is known. “Entropy” is an essentially macroscopic concept, and is defined for a
system when we have, at best, knowledge of a few macroscopic quantities; e.g., in
the above toy model, the entropy S(M1) is a property of the macroscopic state
characterized by a particular value of M1 (as we saw, it is essentially the logarithm
of the number of micro-states that correspond to this value).

What I have outlined above is essentially what is usually called the “information
theoretic” approach to entropy; it clearly fits in well with (and could be regarded as
a special case of) the “subjectivist” approach to probability in general. There exists
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another approach, usually called the “ergodic” approach, which can be regarded
as in some sense a special case of the “objectivist” or “frequentist” approach to
probability. It is based on the so-called “ergodic hypothesis”, and closely related
hypotheses such as mixing, K-system behavior, etc. Crudely speaking, in the
present context, we can define these as stating that a system with a given fixed
energy will in time explore all configurations available to it that are consistent
with that constraint and, moreover, spend equal time in each. Needless to say,
this relies, as above, on having a correct count of the different configurations.

If true, the ergodic hypothesis would do two things for us. First, since the
probability of our observing a given microstate is presumably proportional, under
normal conditions, to the time the system spends in it, it would justify the use of
the principle of indifference used in the information-theoretic approach. Second, it
would justify our “prejudice” that the system, when started from a nonequilibrium
macrostates, would eventually attain the equilibrium one, since, in effect, it starts
from one of a very small set of configurations (that correspond to the original
nonzero value of M1) and ends up spending the overwhelming majority of its time
in a much larger set (that corresponding to M1 = 0). The very small fraction of its
time that it spends in the long run in the macrostate corresponding to the original
(improbable) value of M would not, in practice, be observable experimentally.

Unfortunately, not only has the ergodic hypothesis (and related ones) been
proved only for a very small set of systems, it has actually been disproved for a
considerably larger class. The most common reason for its failure, in real life, is
the existence of some conservation law or laws different from that of conservation
of energy. To take a trivial case, it is clear that if in our toy model we forbid “cross-
boundary” flip-flops, thereby conserving M1 and M2 separately, no relaxation to
equilibrium can occur. In response to this consideration, one might perhaps object
that no conservation law is ever completely exact, and that therefore it is only a
matter of how long we are prepared to wait. However, a more surprising result
that has come out of the (very sophisticated) work of the last few decades in
nonlinear mechanics is that in many systems, despite the absence of any particular
conservation law for macroscopic quantities (other than the energy, of course),
there are often nevertheless classes of configurations that never “communicate”
with one another; i.e., if we start in one class, the dynamics will never take us into
the other class, in contradiction to the ergodic hypothesis. This result, stated in
more quantitative terms, is the famous KAM theorem; for a further discussion,
see Sklar, pp. 125-7.

By and large most practicing physicists (as distinct from many mathematicians
and philosophers of science!) do not worry over much about the KAM theorem and
related disproofs of the ergodic hypothesis, probably because they are conscious
that the idealized dynamics used in the proofs are themselves unlikely to corre-
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spond exactly to any real-life system. Most physicists, in fact, probably rather tend
to assume that in the absence of macroscopic conservation laws (which there are
standard techniques for taking into account), the ergodic hypothesis is true FAPP
– “for all practical purposes”. It is unclear whether this spirit of nonchalance will
some day let us down. . .


