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Cosmology: The “Standard Model”

Let’s start by asking what kind of picture of the Universe we might have formed had we
never heard of Einstein and general relativity. We start from a general observation that
will also play a fundamental role in post-Einsteinian thinking: namely that, as far as we
can tell, provided we go to a sufficiently large scale,

(a) the matter in the Universe seems to be roughly constant in density, and

(b) there appears to be nothing special about our own position (or is this, in fact,
a prejudice rather than an experimental fact?).

This gives rise to at least two obvious problems:

(1) Olbers’ paradox: light from a source a distance R from us falls off as 1/R2, but
the number of sources within a shell of radius R increases as R3. Hence, the total
light from all sources within a radius R increases as R, and tends to infinity as
R→∞. If we assume that the light is absorbed en route, then we have a problem
with heating. So, why is it dark at night? Only solution: R must be finite!

(2) Newton’s dilemma: If gravity continues to operate on the scale of the cosmos, then
the Universe must be unstable against gravitational collapse (as is any sphere of
finite radius). Two possible solutions:

(a) the Universe is, in fact, infinite; or

(b) it really is unstable and hence time-dependent.

The second solution was as intuitively repugnant to pre-Einsteinian thought as it
was originally to Einstein himself.

In fact, we now believe that a correct description of the Universe has to be based
on the general concepts of general relativity and must therefore allow for the possibility
that spacetime is curved, even if we do not believe all the details of Einstein’s theory. Al-
though the curvature may be (and almost certainly is!) too small to be easily observable
on the scale of the Earth, or even the Solar System, it may well dominate the behavior
of the Universe in the large.

In applying the concepts of general relativity to the Universe as a whole, we first
ask what general symmetry arguments we can apply and what they will buy us. One
very tempting prejudice is what is called the “perfect cosmological principle” (PCP): the
Universe looks the same (on a sufficiently gross scale, of course) as viewed from any point
in any direction and at any time. It turns out that this assumption places extremely
strong constraints on the geometry of spacetime and in fact allows only a unique kind
of space, known technically as “De Sitter space”; this space is the basis of the so-called
“steady state theory” of Hoyle, Gold and Bondi. Unfortunately, the general opinion is
that the PCP, and hence, a fortiori, the steady-state theory, has been refuted directly
by experiment (cf. below).
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The “next best” assumption we can make is the so-called “cosmological principle”:
if we choose our time and space reference frame appropriately, then the Universe at any
given time looks the same viewed from any point in space and in any direction. What is
the “appropriate” choice of reference frame? (Recall that in GR as such we are entitled
to use any frame whatsoever!) Evidently it has to be one in which the local matter of
the Universe (averaged over local fluctuations, etc.) is at rest (if not, by definition the
Universe would look different in the direction the matter was moving!) So we choose our
reference frame to be that of an observer who is at rest with respect to the (averaged)
local matter of the Universe. The time measured by such an observer is called “cosmic
standard time” (how exactly we define it is of no great importance, provided it does
not distinguish one observer from another; e.g., we could define it from the temperature
of the blackbody radiation background – see below). Note that in a sense we almost
appear to have smuggled back the “ether”! However, the appearance of a “privileged”
frame is illusory: although the Universe as a whole certainly looks simpler when viewed
from the cosmic reference frame, the basic laws of physics still conform to the postulates
of special and general relativity and are valid in any frame.

We still have to choose the coordinates for our space reference frame. Various choices
are possible, but the simplest choice is so that the coordinates of each piece of matter of
the Universe are independent of time. Note carefully that this does not mean that the
distance between different galaxies (etc.) is necessarily independent of time (cf. below);
it is analogous to defining the coordinates of points marked on a balloon to be relative
to the balloon as a whole: the distance between the points still changes as the balloon
is blown up. If we make this choice, then it turns out that at any given value of cosmic
standard time t, the geometry of the Universe is rather simple. It is parametrized, first,
by a number k that is fixed for all time (in all reasonable models!), can take values
+1, 0, or −1, and tells us about the overall form of geometrical structure (see below);
and second, by a so-called “scale factor” R(t) that in general may be a function of t.
Specifically, the relevant (“Robertson-Walker”) metric is

ds2 = −dt2 +R2(t)

{
dr2

1− kr2
+ r2dΩ

}
where dΩ is shorthand for the standard angular factor dθ2 + sin2θdφ2. In the special
case where R(t) is time-independent, it can clearly be absorbed into our definition of the
unit of length, but in the (realistic) case where it depends on time, it essentially tells us
how the average matter in the Universe is expanding (or contracting) in time. That is, if
R increases by a factor of 2, this is equivalent to saying that the distance between a pair
of neighboring galaxies has doubled, as measured in terms of some standard noncosmo-
logical unit such as the wavelength of a particular spectral line (or the centimeter, which
is based on this). The question obviously arises whether this expansion (contraction)
is “real” or just a consequence of our arbitrary-looking convention for the coordinate
system; we return to this question in the context of Hubble’s law.

The quantity k in the expression (“RW metric”) for the geometry of the Universe
has the following significance: if k = 0, then the (spatial) geometry of the Universe in
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the large is flat – i.e., it is just that of ordinary 3D Euclidean space. Obviously, in this
case, the Universe is infinite in spatial extent; such a universe is called “flat”. If k = +1,
the geometry is the 3D generalization of a sphere; that is, if we go far enough in any
direction we will return to our starting point. The “radius” of the Universe at any given
time t is just the scale factor R(t), and its volume is finite and of order R3(t). This is
called a “closed” Universe. Finally, if k = −1, we have an “open” Universe, which is
formally a space of constant negative curvature; this is a beast that is very difficult to
visualize intuitively, but it may be thought of as somewhat like the behavior of a 2D
surface near a saddle point. In this case the scale factor R(t) cannot be interpreted as
a “radius” since, as in the case k = 0, the spatial extent of the Universe is infinite, but
is in some sense a measure of the (inverse) curvature. The three above possibilities are
the only ones that are allowed by the cosmological principle.

It should be emphasized that everything said so far is a consequence of quite general
considerations of geometry and symmetry; we have nowhere invoked any considerations
that are specific to GR or any other theory of gravity. However, to fix the value of the
characteristic constant k, and also the all-important time-dependence of the scale factor
R(t), we have to rely on a specific theory. The class of universes that follow if we combine
the cosmological principle with Einstein’s GR are called “Friedmann universes”. It turns
out that in such universes, application of Einstein’s original equations expressing the way
in which the presence of mass curves (4D) spacetime leads to the following results for
the “dynamics” of the scale factor R(t):(

dR

dt

)2

=
8πG

3
ρ(t)R2(t)− k (∗)

In this equation,† G is the Cavendish (universal gravitational) constant, R(t) is the scale
factor of the Universe at time t as above, and ρ(t) is the energy density, which for current
conditions (where most of the matter in the Universe is nonrelativistic) is essentially the
mass density and hence is proportional to 1/R3(t). Quite generally, it can be shown that
ρ falls off with R faster than 1/R2, as a result of which the RHS of the equation can be
zero for at most a single value of R; a little further analysis shows‡ that even in this case
d2R/dt2 must be nonzero. Hence, at least one of the quantities dR/dt or d2R/dt2 must
be nonzero at any given time. Thus, the original Einstein equations do not tolerate a
solution in which the geometry of the Universe is independent of time. (R(t) = const.)

This conclusion upset Einstein to an extreme degree, since like almost all of his con-
temporaries, he had been brought up to think of the Universe as eternal and unchanging.
In fact, it worried him so much that he proposed to remedy the apparent defect of his
model by adding to his original equations an extra term containing the so-called “cos-
mological constant”. Its value is so tiny that it has no observable effect within the Solar
System (or even at the level of the binary pulsar, etc.), and hence does not spoil the

†If you are not familiar with the notation of the differential calculus, think of dR/dt as the relative
velocity of two objects separated by R.

‡This does not follow simply from the above equation itself (which for k = +1 is clearly satisfied by
R = 3/8πGρ, R(t) and ρ(t) independent of t); we need to go back to the analysis that led to it.
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agreement of the original model with observations; but on the scale of the Universe as
a whole, the effect of the extra term is (with a suitable choice of the constant) to allow
the RHS of the equation to be zero and hence R to be independent of time. In his later
(post-Hubble) years, Einstein not only rejected the term “cosmological constant”, but
also described its addition as “the worst mistake of my life”. Today, even though the
original motivation for introducing it has vanished, some people continue to favor its
addition to “standard” GR in order to solve other technical problems. (In particular, it
comes back with a vengeance in the context of “inflation”, on which see below.)

Why has the original motivation vanished? Because nowadays, following Hubble’s
revolutionary discoveries in the early 30s, almost everyone accepts that the Universe is
not static but is in fact expanding. Hubble’s raw data consisted in the measurement
of the frequency of spectral lines emitted by stars that he had already shown (to most
people’s satisfaction) were in galaxies outside our own. On identifying those lines with
those emitted in known atomic transitions on Earth, he found that the frequencies were
systematically less than those of the corresponding lines on Earth – by an amount that
appeared to be roughly proportional to the distance of the galaxy in question from us
(which can be independently estimated); this is the famous “redshift”. Hubble’s redshifts
were a small fraction of the original frequency, but in recent years, those measurements
have been extended to very much more distant objects, including quasars believed to be
billions of light years away, which have redshifts of more than 4 (so that, for example,
the Hα line, originally in the ultraviolet, is shifted down into the visible spectrum).

The standard interpretation of the redshifts measured by Hubble and subsequent
workers is as a Doppler effect. Recall that the sound emitted by the siren of an ambulance
moving away from us (/ toward us) is lower (/ higher) than when the vehicle is at rest,
and that the same is qualitatively true for light even in special relativity. Hence, if
the redshift really is a Doppler effect, we can read off from it more or less directly the
velocity of the galaxy in question along the “line of sight”. Hubble’s fundamental result,
based on this interpretation, is that once local fluctuations are removed, the galaxies in
our neighborhood are moving away from us, with a velocity that is proportional to their
distance from us:

v = H0r

where H0, the Hubble constant, is (as now believed) approximately 70 km/sec/Mpc,
or expressed as a time, H−10 (≈ 1010 yr). (We will see the significance of this so-called
“Hubble time” below.) In recent decades, it has been confirmed that more distant
sources also obey this law, at least approximately. The above formula is exactly what
we would expect if the scale factor of the Universe, R(t), is increasing at a rate given by
the rate Ṙ/R = H0;

§ in fact, apart from (the same) constant R(t), it is just the distance
of the source from us and Ṙ(t) the velocity. Note that according to the cosmological
principle, all observers who are at rest relative to the local matter of the Universe should
see the Hubble expansion no matter where they are; the analogy often used to illustrate
this is of a rubber sheet with various points marked on it that is stretched uniformly –

§Ṙ is an abbreviated notation for the quantity that was denoted dR/dt above.
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the distance between any two points will increase at a rate proportional to their current
distance.

The interpretation of the raw data (the redshifts from distant galaxies or quasars)
as indicating the expansion of the Universe is so fundamental an element in our current
picture of the Universe that it is important to take a moment to think about possible
loopholes in the argument leading to that conclusion. The first has to do with the
interpretation of the redshift as a Doppler effect. In fact, at least one alternative origin
of redshifts is known in GR, namely the so-called “gravitational redshift” (cf. lecture
15). To interpret the data in this way, we would need to suppose that we are starting
at a point of exceptionally high gravitational potential and that neighboring galaxies
are systematically at an appreciably lower value. Although this explanation cannot be
totally excluded a priori, it seems to violate the spirit of the cosmological principle, in
that we would be occupying in some sense a specially privileged position in the Universe;
in addition, it seems difficult to reconcile the postulated variation of the gravitational
potential with what we know about the distribution of matter in our neighborhood.
An alternative scenario, in which there is nothing special about the other galaxies as
such but the stars on which we are observing the redshift are exceptionally compact
and hence have large redshifts, seems to accord even more weight on coincidence. As to
other, currently unknown, sources of redshifting (such as a systematic dependence of the
electron charge or mass on position on a cosmic scale), all one can say is that there is
no independent evidence for it, and hence the principle of Occam’s razor would suggest
that we reject it.

Even supposing that the redshift is indeed a Doppler effect as generally believed, in
order to interpret it as indicating an expansion of the Universe, we need to be sure that
it really is proportional to the distance of the source from us. The question of how we
know the distance of an astronomical source from us is itself a very vexed one and is the
subject of whole books. In effect, most of what we (think we) know is to one extent or the
other dependent on the idea of a “standard candle”. That is, from investigation of stars
close enough for us to be able to ascertain their distance directly (e.g., by parallax arising
from Earth’s motion around the Sun), we identify particular kinds of star whose absolute
brightness (“luminosity”) we can correlate with other properties (e.g., in the case of the
so-called “Cepheid variables”, the period of oscillation); then when we see these types of
stars farther away, we assume that the same relation holds and use it to evaluate their
absolute brightness, and hence, from their apparent brightness, their distance from us.
We can then iterate this procedure by finding other, more exotic, objects in the distant
galaxies in question and using them, in turn, as “standard candles”, and so on right out
to the most distant objects correctly accessible to our observation. Unfortunately, the
whole procedure is highly error-prone (which is the main reason for the large current
uncertainty in the value of the Hubble constant); because of the sequential nature of
the argument, any effort in the estimation of the closest objects to us will propagate
out to that of the most distant quasars. In fact, there is a (currently small) minority
of astronomers who believe that the observed quasars are actually not at cosmological
distances at all but may even lie within our own galaxy; if this were to turn out to
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be correct, then of course the redshifts from them must have a totally different origin
from that usually believed. From now on I shall assume that the “establishment” view
is in fact correct, i.e., that the time-variation of the scale factor R(t) inferred from the
redshift data is indeed real.

Even given this conclusion, one can, of course, still ask whether the interpretation of
a time variation of R(t) as indicating a physical expansion of the Universe is necessary.
Could it not turn out to be merely a matter of our convention for the units of distance,
etc.? The answer, it seems, is that (as so often in these matters) we have a choice. One
possibility is to make the conventional interpretation, in which we take the speed of
light to be constant for an inertial observer by definition and hence (given that we have
fixed a unit of time) define the unit of length in terms of the wavelength of a standard
spectral line; then the expansion is a real effect – i.e., the distance (measured in units
of the wavelength) between neighboring galaxies really is increasing with time in the
way that Hubble inferred. Or we can choose our unit of length so that by definition the
universe is static (the distance between neighboring galaxies, modulo local fluctuations, is
independent of time). But in that case, we cannot simultaneously take the wavelength of
any spectral line to be independent of time; and given that we have fixed its frequency
in terms of some independently-defined unit (such as the rate of change of the local
CBR temperature; cf. below), the speed of light would therefore also depend on time
even for an inertial observer. The situation is reminiscent of the choice between SR
and the Lorentz-Fitzerald contraction/ time-dilation scenario: while the experimental
predictions are the same for the two interpretations, the “standard” one is by far the
simpler!

Let’s now return to our fundamental equation (∗) and define the quantity

Ω(t) =
8πGρ(t)R2(t)

(dR/dt)2

While we can discuss this quantity for arbitrary times, the most important conclusions
relate to its value “now”, which we will call “Ω0”. Since the current value of (dR/dt)/R
is, according to the standard interpretation, just the value H0 of the Hubble constant,
we can write (ρ0 = mean density of matter [energy] “now”)

Ω0 ≡
8πGρ0
H2

0

and thus our equation (∗) can be written

k/(H2
0R

2
0) = Ω0 − 1

We see immediately that if Ω0 = 1 exactly, then k = 0 (“flat” Universe); if Ω0 < 1,
then k = −1 (“open” Universe); and if Ω0 > 1, then k = +1 (“closed” Universe).
Furthermore, in the last case, if Ω0 is not too different from 1 in order of magnitude,
then the current “radius” of the Universe is of the order of the “Hubble time” H−10

(times c, in usual units); i.e., it is of the order of 10 billion light years. A similar
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conclusion follows, for the “open” Universe, for the current scale factor R0. For a “flat”
Universe (k = 0), the quantity R0 itself really has no physical meaning (though the
quantity H0 [= (dR/dT )/R “now”], of course, does); this is not surprising since there is
no “characteristic scale” of flat (Euclidean) space.

Friedmann universes, be they flat, open or closed, have one important feature in
common. Assuming that the Universe is indeed now expanding, we can integrate the
equations for R(t) backward in time and, given any relation between the energy density
ρ(t) and the scale factor R(t) that is physically reasonable (see below), we reach the
conclusion that there exists a point some finite time backward in the past at which
the scale factor was zero and the energy density (and hence the temperature) infinite.
This is the scenario that has become known as the “Hot Big Bang”. In any Friedmann
model, while the exact value of the “age of the Universe” (i.e., the time elapsed since
the hot big bang) depends somewhat on the density, its order of magnitude is always
the Hubble time. Thus, we conclude that, within a factor of 2 or so, the Universe is
approximately 10 billion years old, the exact value depending on the parameters H0 and
(weakly) on Ω0 and k. It is interesting that this estimated age is comparable to the
age of the oldest stars as inferred from the best available astrophysical theory; indeed,
it appears that the lower-end estimates of H0 may actually risk making the Universe
younger than its oldest stars! It should be emphasized that uncertainties about the
behavior of matter at temperatures and densities very different from those encountered
in terrestrial laboratories affect only the first few seconds or minutes of the Big Bang
scenario; thus, the general existence of a big bang, and its data in time, are almost
completely insensitive to these unknowns. It might also be asked whether the existence
of a “big bang” is simply a pathology of the Friedmann model, and whether, for example,
relaxing the cosmological principle so as to allow substantial fluctuations of the matter
density on the scale of the “size” (to the extent that it can be defined!) of the Universe
might enable one to avoid this conclusion. A classic piece of analysis by Penrose and
Hawking around 1970 answered this question definitively in the negative: given only that
the Universe is currently expanding, that GR applies at all relevant times, and that the
relation between energy and mass density has any physically reasonable form, then the
Hot Big Bang is inevitable, irrespective of the current degree of inhomogeneity.

So far, everything we have said has depended on pure theory augmented only by
Hubble’s law. One might reasonably ask: is there independent experimental evidence
for the Hot Big Bang scenario? In response to this question, the conventional viewpoint
cites three pieces of evidence: the abundance in the Universe of the different isotopes
of the light elements, the cosmic background radiation (CBR), and the existence and
structure of the galaxies. The reason that the isotopic abundance of light elements is
relevant is that, if one extrapolates the laws of particle physics as known from laboratory
experiments back to the early Universe (a few minutes after the HBB), one concludes
that such elements would have been formed at that time by combination of what were
originally free protons and neutrons, and the fraction of each isotope formed can be
calculated rather exactly, with essentially no unknowns other than the value of Ω0 and
a related quantity (see below – which anyway affects the answer only weakly). The
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comparison of the experimental ratios with the theory is somewhat complicated by the
fact that some elements such as He could also have been produced later in the interior
of stars, but it is thought that one knows how to allow for that, and the general belief is
that the agreement between theory and experiment is extremely impressive and (since it
is certainly difficult to think up an alternative scenario that would have produced such a
good quantitative fit!) gives strong support to the HBB model, at least as it deals with
events at a time a few minutes after the “bang” itself.

The second piece of evidence is the cosmic background radiation (CBR), discovered
in 1965 by a couple of Bell Labs researchers who were trying to develop microwave
detectors, presumably for industrial or military purposes. It had in fact been predicted
earlier that if the HBB scenario were correct, a “relic” of it should be left in the form
of a uniform back ground radiation with the so-called “black body” (thermal) spectrum
– precisely what was found. (The experimentally observed temperature of the CBR is
about 2.7K.) This radiation basically tells us about the state of the Universe at the point
where the temperature has dropped sufficiently for electrons and protons to combine and
form atomic hydrogen; before that, the Universe was opaque to radiation because of the
strong scattering of light by the electrons. This is about 100,000 years after the HBB,
so much later than the “nucleosynthesis” period. The final piece of evidence usually
cited has to do with galactic structure, but it has to be said that this (a) refers to a
considerably later period (∼ 3× 108 yrs),¶ and (b) rests on much less secure theoretical
foundations than the other two.

We have seen that the past history of the Universe, and in particular the occurrence
of the HBB, is only fairly weakly sensitive to the value of k (i.e., to whether it is open,
flat or closed). With respect to the future, things are quite different. Going back to our
fundamental equation (

dR

dt

)2

=
8πG

3
ρ(t)R2(t)− k (∗)

we see that if either k = −1 (open Universe) or k = 0 (flat), the RHS can never become
zero, so the Universe will continue to expand forever (though in the flat case, the rate
of expansion will tend to zero as t → ∞, since ρ(t) ∼ R−3(t)). On the other hand, if
the Universe is closed (k = +1), then since the quantity 8πG

3 ρ(t)R2(t) is decreasing and
has a current value Ω0 > 1, the RHS not only can, but must, become zero at some time
in the future. At this point, the expansion reverses and the scale factor R(t) retraces
its former path in the backward direction; i.e., we get a contraction and the Universe
heats up again. Assuming that no new laws of physics come into play at this stage, we
expect that the reversal is complete and the original Big Bang is “reflected” in a Hot
Big Crunch.

Thus, if we wish to predict our long-term future, it is essential to know the value of
k, or equivalently that of the density parameter Ω0 (since we know that Ω0 <,=, > 1
corresponds respectively to k = −1, 0,+1). The most obvious way of doing this is
to measure the parameters H0 and ρ0 directly (G is known to high accuracy). The

¶Although the “seeds” may have been produced at quite early times.
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estimated uncertainty in H0 is currently about 5%; unfortunately, the uncertainty in ρo,
the current mass (or, more strictly, energy) density of the Universe, is much greater. We
can obtain a lower limit on ρo from the observed matter we see in stars, intergalactic
space, etc. – the so-called “luminous” matter; putting this into the expression for Ω0

gives Ω0 > 0.005. However, there are strong suspicions that there must be a large
amount of “dark” (non-luminous) matter around, primarily because it seems impossible
to understand the way in which the velocity of matter in the outer regions of galaxies
like our own depends on radius without postulating it. The existence and nature of this
“dark matter” is one of the major current problems in cosmology. If we assume enough
of it to account for the observed rotational properties of galaxies, the effect is to raise
the lower limit on Ω0 to ∼ 0.1 − 0.2. It is still only a lower limit because intergalactic
space is so vast that it could contain an appreciable contribution to ρ without it giving
easily detectable gravitational effects. The most obvious candidate is hydrogen, either
atomic or ionized (i.e., free protons and electrons), and fairly tight limits can be put on
this from the absence of appreciable absorption effects, etc.; but there are all sorts of
suggestions for “exotic” intergalactic dark matter (massive neutrinos, axions, etc.) that
are much more difficult to exclude.

In principle, there are at least two other ways of determining Ω0 apart from the direct
measurement of ρ0. First, in any Friedmann universe, Ω0 is simply related to the rate of
change of the Hubble parameter H(t) in time, and this is something that we might infer
by observation of the redshift from sufficiently distant stellar objects. Unfortunately, any
detection of this parameter is made uncertain by our lack of knowledge of the history
of the distant sources themselves. The second possibility is to use the fact that Ω0

does enter, albeit weakly, the expressions for the production of light isotopes by cosmic
nucleosynthesis in the early stages of the HBB. Because of uncertainties in some of
the other parameters occurring in the expansions, this method of determination is also
somewhat uncertain, but for what it is worth, suggests that Ω0 > 1. Thus, at the end of
the day, all we can say with any degree of confidence is that Ω0 is certainly greater than
0.005, probably greater than 0.1, and may be equal to or somewhat greater than 1.

Actually, this conclusion is itself remarkable, for the following reason. If the param-
eter Ω(t) ≡ 8πGρ(t)/H2(t) started off exactly equal to 1, then it will, of course, stay
exactly equal to 1 at all times (“flat” Universe). If, on the other hand, it started off
even very slightly different from 1, then it is easy to show from our basic equation that
it would very rapidly move away from 1. To get a value as close to 1 at the present
epoch as the experiments suggest, we would need to have started fantastically close to
1 at an early stage in the evolution of the Universe – something that would seem to be
a pathological coincidence, if Ω0 6= 1 exactly.

The relatively simple picture outlined above is complicated by two further consider-
ations that have emerged in recent years. First, it has been appreciated that a number
of puzzles concerning the present state of the Universe, and in particular the one men-
tioned in the last paragraph, can be resolved by postulating that at a very early stage
in its history, it underwent a period of very rapid (exponential) expansion, with R(t)
increasing by a factor of order 1030. This is known as the “inflationary” scenario, and
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is embraced by most, though not all, cosmologists. The second complicating factor is
that over the last ten years considerable evidence has surfaced that suggests that the
expansion of the Universe is actually accelerating (i.e., the Hubble parameter is increas-
ing with time). This discovery was completely unexpected, and is simply inconsistent
with the fundamental equation (∗) of the Friedmann cosmology as it stands. Ironically,
the simplest way of accommodating the acceleration is by reintroducing a version of
Einstein’s cosmological constant, in the form of a “dark energy” that permeates space
but is invisible to our standard probes. Whether this is indeed the solution, or whether
a more radical conceptual revolution is needed, remains to be seen.


