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Waves in Classical Physics

If I say the word “wave” in no particular context, the image that most probably springs
to your mind is one of a roughly periodic undulation on the surface of a pond or, perhaps,
the sea. But the concept of a wave in classical physics is actually much more general,
and in particular the periodicity is not really an essential aspect. (Huygens, Fourier...)

At least in classical (i.e., pre-relativistic as well as pre-quantum) physics, a wave
always occurs in (or on) some medium. Examples include surface waves on water,
transverse waves on a plucked string, and sound waves (pressure, or density waves in
air). We will assume that there exists a state where the medium is undisturbed (string
stretched straight and taut, water flat, air still...), and until further notice, we will
choose an (inertial) frame of reference in which the undisturbed medium is at rest. In
general, we can describe a disturbance in the medium by specifying some quantity (call
it generically q) that tells us how far the medium is displaced from its undisturbed
(equilibrium) state at a given point, at a given time. (By contrast, in the case of a
particle we ask: what is its position at a given time? I.e., we write x = x(t).) Thus,
for a stretched string, q would be the transverse displacement from the original straight
configuration, and would be a function of one space variable, the distance x along the
string, and of time:

q = q(x, t)

For the water surface, q would be the height above the equilibrium, and would be a
function of the two variables x and y describing horizontal position and of t; for sound
waves in air, q would be the excess pressure above equilibrium and would be a function
of the three space coordinates x, y, z, and of time; and so on. Two points that are
absolutely crucial to appreciate are (1) in all cases, the “disturbance” q can be positive
or negative – crudely speaking, waves can have troughs as well as crests, and (2) q is
always defined as a function of position as well as of time: in general it makes no sense to
ask for “the position” of the disturbance (though it may make limited sense, see below).
Any disturbance of this type is generically called a wave, and the quantity q(x, y, z, t) is
called its amplitude.

Suppose we take a “snapshot” of the disturbance q at some definite time t, as a
function of position. If we take a second snapshot at a slightly later time and compare
the two, q(x) will in general look different; the disturbance propagates, i.e., changes its
space-dependence as time evolves. Exactly how this happens depends on the details of
the system studied; generally speaking, the system will obey some equation that relates
the changes of q with time near some point (x, y, z) to the value of q and its space
derivatives near (x, y, z). All the cases we shall be interested in have the property that
the equations obeyed by q(x, y, z, t) are linear – that is, crudely speaking, changes of q in
time are directly proportional to changes of q in space (and not, for example to changes
of q2); as we shall see, this property has a very important consequence.

To see qualitatively how such an equation might arise, let us look briefly at a specific
example, namely, transverse waves on a stretched string, such as on a violin. In the
equilibrium (undisturbed) state the string is straight and taut. Consider now what
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happens if at a given time t the string is displaced so that its form is something like
Fig. 1.

Figure 1

What determines how the string will behave in the next few instants? Actually, nothing
but Newton’s second law: acceleration = force/mass! Consider a small element of length∗

∆x and, therefore, mass m = ρ∆x (ρ is the mass per unit length).

 

Figure 2

The forces acting on this element arise from the tension of the parts of the string im-
mediately to its left and right; the actual magnitude of the tension is (approximately)
that of the original unstretched string, but its direction may be different. In the special
case (a), where the string happens to be straight at the point in question even though it
is not parallel to the original unstretched one, it is clear that the forces exerted by the
right and left “neighbors” are equal and opposite, so there is no net force and no accel-
eration. However, in case (b), there is a net resultant force, which is proportional to the
difference in slope,† ∆(∆q/∆x); in fact, numerically, it is simply equal to Y∆(∆q/∆x),
where Y is the original tension in the unstretched string. But the quantity ∆(∆q/∆x) is
approximately equal to ∆x times the “rate of change of slope” (d2q/dx2 in the standard
notation of differential calculus). Equating Y∆(∆q/∆x) to the mass ρ∆x times the
(transverse) acceleration of this bit of the string, we find that the length ∆x of the ele-
ment in question cancels between the two sides and we get the result (for the transverse

∗Note that the term ∆x is being used in a slightly different sense than in lectures 6-8.
†If you have difficulty with the double deltas, it is recommended that you reread the discussion of

the definition of “acceleration” in lecture 6.
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acceleration):‡

acceleration = (Y/ρ) × rate of change of slope (α)

Or, in the formal language of differential calculus:

d2q(x, t)

dt2
= c2

d2q(x, t)

dx2
, c2 ≡ Y/ρ (c has dimensions of velocity)

This equation has the standard form of a nondispersive linear wave equation (we will see
the reason for the name in a minute); a similar equation is satisfied, e.g., by sound waves
in air or (in an appropriate limit only) waves on a water surface. However, not all waves
satisfy a simple equation of this type; for example, the right-hand side may contain more
complicated quantities related to the space variation. In this case, the wave equation is
called “dispersive”; one example is water waves under more general conditions.

Whatever the detailed form of the equation obeyed by the wave (as long as it is
linear), it always has, among its other solutions, the familiar “monochromatic wave”;
that is, a disturbance that is wavelike in the intuitive sense, corresponding to a series of
equally spaced crests and troughs that move to left or right with constant velocity.

Figure 3

In such a case, a “snapshot” of the disturbance taken at a fixed time will produce the
picture in Fig. 3; the (constant) separation between the wave crests is the wavelength
and is conventionally denoted λ. On the other hand, if we stand at a fixed point in
space and watch the surface of the water (or more generally the quantity q(x, t)) as a
function of time, we find it oscillates regularly, with some period (interval between times
of maximum height) conventionally denoted T (λ). Now if I am standing at a given point
and wait the period T between one crest and the next, it is clear that the last crest has
moved on exactly a distance λ. Thus, the speed with which the pattern of crests travels
– call it c – is related to the wavelength λ and the period T (λ) for that λ by the simple
relation

c(λ) = λ/T (λ)

‡It turns out (not obvious!) that, for small displacements, the longitudinal motion of the element ∆x
(i.e., motion in the x-direction) can be neglected.
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In the general case, the velocity is a function of the wavelength λ, as the notation
indicates. Note that all of this is completely independent of the overall “amplitude” of
the wave (i.e., the height of the crests).§

In the special case of a nondispersive equation of the type of eqn. α, the situation
is particularly simple. It is fairly clear that the “rate of change of slope” in space is
proportional to the amplitude A and inversely proportional to the square of the wave-
length λ. Similarly, the acceleration is proportional to A and inversely proportional to
the square of T . So, in eqn. α, the factors of A cancel and we get

(const.)T−2 ∝ c2(const.)λ−2 (β)

where c is the constant quantity
√
Y/ρ. Thus, T ∝ λ. It is straightforward to show that

the other constants on the two sides of eqn. β are the same, so in fact we find the simple
result:

T (λ) = λ/c (or νλ = c, where the “frequency” ν is just 1/T )

In this case, the “wave velocity” c(λ) is independent of λ and just given by the c =
√
Y/ρ

that appears in eqn. α. Thus, in this case, all simple “monochromatic” waves travel at
the same speed, regardless of wavelength. This is no longer true for more complicated
(dispersive) wave equations.

We now ask the following question: considering, for definitiveness, the case of a
stretched string, suppose we pluck it at time zero in such a way that q(x, 0) has a
definite shape; say, for example, the one in Fig. 4 (displacement much exaggerated!) and
let it go.

Figure 4

What does the disturbance (amplitude) q(x, t) look like at a later time t? (In the
following, I neglect for simplicity complications associated with the finite length of the
string, which turns out to be a valid approximation if its length L is much greater than
ct.)

The answer is given by a remarkable theorem of pure mathematics (Fourier’s the-
orem): given any disturbance q(x) (or more precisely, any disturbance of any type re-
motely likely to occur in practice), we can always regard it as “built up” of a set of (in

§In the case of a simple “monochromatic” wave of the type discussed, the term “amplitude” is usually
used to refer to the height of the crests.
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general, an infinite number of) monochromatic waves of different wavelengths λ. At first
sight, this theorem may look implausible, because any one monochromatic wave will ex-
ist everywhere in space, whereas, e.g., the q(x) in Fig. 4 corresponds to zero disturbance
anywhere except the plucked region; nevertheless, it is true! What we do, therefore, is
“analyze” (break up) the disturbance in question into a set of monochromatic waves,
calculate the progress of the latter up to time t according to the prescription that a wave
of wavelength λ moves with velocity c(λ), and then reassemble at time t the different
waves to give the total disturbance q(x, t). In principle, this procedure gives a complete
solution of the problem.

The case of nondispersive wave equation is particularly simple, because once one has
isolated the set of waves that are moving (say) rightward, they all travel at exactly the
same velocity c, and consequently the “disturbance” they form itself travels rightward
at this same velocity and without change of shape (i.e., without “dispersion” – hence
the name¶). Thus, for example, if we release the string as plucked in the above diagram
from rest, what happens is that it splits into two disturbances of equal magnitude, which
travel right and left, respectively, at constant velocity c:

Figure 5

The two “compact” disturbances are known as “wave packets”.
In the case of a dispersive wave, the different component waves (even the rightward

ones) travel with different velocities, and hence, in general, the shape of the distur-
bance changes in time and, in particular, it (usually) tends to get wider (“dispersion”).
However, the concept of a “wave packet” – that is, a reasonably compact or localized
disturbance – can still remain valid under certain conditions (very crudely speaking, the
initial width of the packet should be large compared to the characteristic wavelength
of the waves that principally compose it, and the wait time should not be too great).
Thus, although we emphasized above that, in general, it makes no sense to ask for the
“position” of a wave-type disturbance, it makes some sort of approximate sense in the
case of a wave packet – even in the dispersive case, provided the packet stays together
fairly well. We will see that this feature is crucial in the quantum-mechanical picture of
microscopic objects.

¶Actually, historically the term “dispersion” comes from optics: light of different wavelengths travels
in glass with different velocities, and as a result, a prism “disperses” (separates) the different colors
(wavelengths).
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At this stage, we make a short digression to ask about the energy associated with a
wave. Actually, this is quite a complicated question, and the exact expression depends in
detail on the nature of the wave-type phenomenon considered. However, one can make
two general statements.

(1) In the absence of dissipation, the total energy associated with a disturbance is
conserved, though it may be “relocated” in time between different spatial regions.

(2) Crudely speaking, under most conditions, the energy associated, at any given time
t, with a particular region of space in the neighborhood of x, will be proportional
to the average of the square of the amplitude q(x, t) in this region:

E(x, t) ∝ q2(x, t)

where the notation A(x, t) indicates that the quantity A is averaged over a small
region of space surrounding x (note that there is no average over time t). In par-
ticular, in the motion of a wave packet, as discussed above, the energy is relatively
well-localized in the neighborhood of the packet (as we should no doubt expect
intuitively!): regions where q(x, t) is small have little or no energy associated with
them.

In the above argument concerning the development of the disturbance q(x, t), we made
implicit use of a very fundamental principle that holds for any system obeying a lin-
ear wave equation (whether or not it is dispersive), namely the principle of superpo-
sition: given any two possible solutions, their sum is also a possible solution. (It was
this principle that we used, implicitly, when we assumed that the propagation of the
whole disturbance could be obtained by computing the propagation of the component
monochromatic waves and reassembling them.) The principle of superposition has a
number of fundamental and remarkable consequences, in particular the phenomenon of
interference. To illustrate this, let us consider the following (symmetrical) arrangement
of stretched strings.
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Figure 6

(Note: the only pegs in Fig. 6 are at the points A, B, and C.) Suppose we generate some
kind of disturbance (let us say for definiteness one of the “packets” illustrated above) at
A. It will propagate down to S, and at that point, we will find in general that part of it
will be transmitted down the string F toward C, and the rest either transmitted toward
B or reflected toward A. Since E ∝ q2, a finite amount of energy, call it E0, will be
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transmitted down F. By symmetry, if we generate the same disturbance at B, the same
will happen but with the roles of A and B interchanged; again part of the wave will be
transmitted down F, and the energy transmitted down it will again be E0. Note that
in each case, we could have generated a “negative” pulse at A (or B); then, of course,
the pulse traveling down F would simply have the sign of q(x, t) reversed, but since E is
proportional not to q but to q2, the transmitted energy is still E0.

Figure 7

Now let us ask: What happens if we simultaneously generate wave packets at A and
B? By the principle of superposition, the packet propagating down F must be just the
algebraic sum of those generated separately by the disturbances traveling from A and
from B. If the packets at A and B are produced “in phase” – i.e., with the same sign –
then we find that a packet of twice the height propagates down F. Since E ∝ q2, this
means that the energy transmitted down F is four times, not twice, E0; i.e., it is more
than the sum of the energies transmitted when only A was oscillating and when only B
was! This phenomena is called “constructive interference.” The opposite case, when the
packet at B is “out of phase” with that at A (opposite sign) is even more spectacular: in
this case the packets traveling down F exactly cancel one another, so q(x, t) is zero on F
and no energy is transmitted down it (“destructive interference”)! (Since I said earlier
that the total energy of a wave is conserved, you might well wonder where the “missing”
energy has gone. The answer is that things work out automatically so that destructive
interference in F is compensated by constructive interference in A or B, in just such a
way that the total energy is indeed conserved.) Can all the energy go down F?

A well-known special case of the phenomenon of interference is the diffraction of a
wave by an aperture or a solid object – i.e., its deviation from propagation approximately
in a straight line (see Fig. 8). The condition for diffraction effects to be appreciable is that
the dimensions of the diffracting object should be not much larger than the wavelength of
the relevant wave. Thus, for example, a doorway will diffract sound (wavelength ∼ 1 m)
but not, to any observable degree, visible light (wavelength ∼ 10−7 m). To diffract visible
light efficiently, one needs to use objects such as very fine wire meshes with dimensions
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of the order of ∼ 10−5 m or less.

(a) Wavelength much greater than size of aperture:
diffraction.

(b) Wavelength much smaller than size of
aperture: no diffraction.

Figure 8

The “Young’s slits” experiment

Newton, and most of his immediate successors, had imagined light to be a stream of
particles, while Huygens and others argued that it was a wave phenomenon. The issue
was decisively settled (at least for a time!) by a series of experiments in the early 19th
century that showed that light to have the characteristically “wavelike” properties of
interference and diffraction. Of these experiments, probably the most spectacular (and
the one that is traditionally used, and that we will use later, to introduce some of the
basic concepts of quantum mechanics) is the one first performed by Thomas Young in
1802, and usually known as “Young’s slits”.

The experiment involves a source of light (of a special kind – a simple light bulb will
not do; see below), an opaque screen with two slits S1 and S2 cut in it, and a final screen
that can either be viewed with the naked eye (as Young must have done) or covered
with a photographic emulsion. If one of the intermediate slits, say S2, is blocked, so
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that light can reach the final screen only through S1, the pattern seen on this screen
is a diffuse blur without any spectacular properties; similarly if S1 is blocked and only
S2 open. However, if both slits are opened simultaneously, the final screen exhibits a
striking pattern of alternating bright and dark lines – a so-called “interference pattern”.
It seems very difficult to explain this behavior if light is a stream of particles (we shall
see just how difficult when we get to quantum mechanics!), but it has an immediate and
natural and explanation if light is a wave, as follows.

Let us suppose that the slits S1 and S2 are symmetrically positioned relative to the
source; then whenever there is a crest of the wave at S1, there will be one at S2, and
similarly a trough at S1 will be accompanied by one at S2 (the technical phrase is that
the waves at S1 and S2 are “in phase”). Now consider a point X on the final screen. If
X happens to be positioned symmetrically with respect to the two slits S1 and S2, then
the crests of the waves coming from these two slits will arrive simultaneously and will
reinforce one another. On the other hand, suppose X is not symmetrically placed, as in
Fig. 9, so that the distance to S1 and S2 is different. Then the time taken for the wave
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Figure 9

to propagate to X from S1 is different from that taken from S2, and in general the crests
of the two waves will not arrive simultaneously; in fact, we may even find that a crest for
S1 arrives simultaneously with a trough from S2 and vice versa. In that case, the two
waves will exactly cancel, leaving no disturbance at all at X (“destructive interference”).
In fact, the amount of “disturbance” (i.e., presumably, of light) received at X should
depend on the difference (call it ∆s(X)) in the path lengths S1−X and S2−X, being a
maximum at points X where ∆s(X) is an integral number of wavelengths λ of the light
(∆s(X) = nλ, n = 0,±1,±2...) and zero when ∆s(X) = (n+ 1/2)λ. Since ∆s(X) varies
continuously with X, we expect a pattern of bright and dark bands, as observed; in
fact, with the help of a little elementary geometry, we can work out, from the observed
position of the bands, the wavelength λ (which turns out to be of the order of 5× 10−7
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meters for ordinary visible light).
Two things are worth noticing about the Young’s slits experiment: first, the fact

that we can get light from a single source arriving at X through both S1 and S2 itself
depends on the phenomenon of (single-slit) diffraction (cf. Figs. 8a and b, above). Sec-
ond, for it to work, λ must be pretty much uniquely defined for the source in question
(“monochromatic” light, such as is provided, to a good approximation, by a sodium arc
lamp): it would be difficult or impossible to see the effect with a standard light bulb,
since the emitted light in this case has a wide spread in its values of λ, and so the
condition ∆s(X) = nλ is met at different X for different components of the light.

Behavior of waves under Galilean transformation

Consider, e.g., a (nondispersive) wave on a string, or more realistically a sound (air
pressure) wave, that is exclusively right-moving. Note that all our calculations of wave
behavior have been implicitly done in a frame of reference in which the eqm. medium is
stationary (e.g., in the case of a sound wave, the frame with respect to which the air is
at rest). In such a frame, the general form of the disturbance is:

q(x, t) = f(x− ct)

(This is just the formal expression of the statement: the wave moves rightward with
velocity c without change of shape.) How does it look from a frame S′ moving with
velocity v in the rightward direction? (If v is negative relative to c, we are moving to
the left.)

Under GT we have:

x′ = x− vt [t′ = t] or x = x′ + vt

Hence:

q(x′, t′) ≡ q(x′, t) = f(x− ct) = f(x′ + vt− ct) ≡ f(x′ − (c− v)t).

Thus, from the moving frame S′, the wave will appear to be traveling with velocity c−v
(just as would a mechanical object). (This looks like common sense!) If v > c, then the
wave will appear to be moving backward (just as does a bicycle overtaken by a car or
a slower train overtaken by a faster one). By a similar argument, a left-traveling wave
will appear to move with velocity c + v. Thus, we can ascertain the rest frame of the
medium from the consideration that it is the unique frame in which (e.g.) sound moves
with equal velocity in both directions (or in 3D, in “all” directions). Note then that this
is unlike the case of particle mechanics: a definite “privileged” frame does exist, namely
that in which the medium carrying the wave is at rest.
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Doppler effect

us ambulance

Imagine, e.g., an ambulance moving away from us with velocity v (suppose for defi-
niteness to the right, i.e., toward positive x). Its siren emits sound waves (velocity c
with respect to the air) with frequency ν0. The extra distance that the ambulance has
traveled away from us between wave “crests” is vT0 = v/ν0, and hence the extra time
taken by the crest to reach us is (v/c)ν−10 . Consequently, the interval between “heard”
crests is:

T = T0 +
v

c
· 1

ν0
, or

1

ν
=

1

ν0
+
v

c
· 1

ν0
⇒ ν =

ν0
1 + v/c

Note this argument applies for either sign of v: i.e., if |v| denotes the actual speed
(irrespective of direction), then the tone of the ambulance moving towards us is ν0

1−|v|/c ,

while when it moves away it is ν0
1+|v|/c . Thus, the pitch drops as it passes us (“Doppler

effect”).
The same argument should prima facie apply to all kinds of waves, provided that v

is measured relative to the (“stationary”) medium of propagation. Note that a similar
argument applies if the ambulance is at rest and we are moving with respect to the
medium (to the right, i.e., v is positive):

v

x

In this case, we argue as follows: if we were stationary, then in a time ∆t, the number
of crests passing us would be ν0∆t. But in fact, in this time, we have moved a distance
v∆t in the direction of the ambulance, and therefore passed an extra number of crests
equal to v∆t/λ = (v/c)ν0∆t. Hence the total number of crests is ν0(1 + v/c)∆t, so that
ν (the frequency we hear) is related to ν0 (that emitted) by

ν = ν0(1 + v/c)

However, if both we and the ambulance are moving at equal velocity (in the same sense)
with respect to the medium, there is clearly no shift. Since we will need it later in the
context of special relativity, I quote for reference the general formula for the case when
the source is moving with respect to the medium M with velocity vs and the receiver is
also moving with respect to M with velocity vr:

ν = ν0
(1 + vr/c)

(1 + vs/c)
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This formula can be derived from the above ones by imagining that a fictitious observer
who is stationary with respect to M receives and re-emits the sound. Evidently, there
is no shift for vs = vr, as stated.

Finally, what is really fundamental about a wave-type phenomenon?

1. It is a disturbance that is “spread out” in space at any given time: it is meaningless,
in general, to ask for the exact “position” of a wave at a given time (although, as
we have seen, under certain circumstances, it may be localized in a general region
of space).

2. It is represented by an amplitude that can be positive or negative, and thus can
show the phenomena of superposition and interference.


