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Lecture 20 supplement: April 1, 2021

PHYSICS 419 - Spring 2021

1 Greenberger-Horne-Zeilinger State

Bell’s analysis requires a series of measurements and a statistical analysis of the results.
Greenberger-Horne-Zeilinger (GHZ) devised a single 3-spin state on which a single mea-

surement is sufficient to test the local hidden variables hypothesis. The GHZ state is
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in which | 1 (})); indicates the spin of particle i. We are using the convention that | 1)
represents a projection of the spin along the positive z axis and hence is the state |+ z). The
down-spin state is | |) = | — z). We do not have to stick with this choice of axis, however.
We can project the spin onto any axis we choose, for example x or y. Since these axes are
perpendicular to one another, we need to represent the projection of the spin along these
axes by a set of mutually orthogonal vectors. The basis that works for x is
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Here + or — stand for along the positive direction and along the negative direction of the
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x axis. We can now solve these equations by taking sums and differences to obtain explicit

expressions for | 1) or | ]):
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Likewise, we can do the same for the y direction. The basis for the y axis which is orthogonal

to the z—direction is
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Similarly, we can express the spins in terms of the y-axis basis states:

1) = (|+y>+|—y>)

) = 5+t —1-v). (6)
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In these states, i = —1.

Now for the puchline. We can express the spins in the GHZ state in terms of the basis
states above. For | 1); we will substitute the first of Eqs. (4) (use the second one for the
down-spin state) and for | 1); and | |); the first and second of Eqs. (6) respectively with

1 = 2,3. We then substitute them into the GHZ state

) = 2\1/5((|+1‘>1+!—x>1)(|+y>2+|—y>2)(!+!y>3+\—y>3)
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and do all the multiplications. Note all the terms that contain | — a) (o = x,y) states in
the first term enter with the opposite sign in the second term. Because there is an overall —
sign in front of the second term (coming from the two factors of i), there can be no terms
with an even number of | — a) states. The only non-zero terms have an odd number of such

states. Each non-zero term enters twice. The result is
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where we have used short-hand notation for a state that looks like (+ 4+ —) = | + z)1| +
Y)a| — y)s. All of these states have the property that the product of the values of the spin
projections onto the x and y axes is X;Y>Y3 = —1. But we could have permuted the spins.

If we do this, we reach the conclusion that

Y1XoY; = —1

YYs Xy = 1. (9)
Now let’s take the product of these results
(X1Y2Y3) (Y1 XoY3) (Y15 Xs) = X1 X, X5 = —1, (10)

if we treat the Y;’s as just numbers. In actuality they are not numbers but operators. So
lets treat them as classically real. So classical realism gives us a prediction for the product
X1X5X3 = —1 which we can test against the rules of quantum mechanics. To proceed, we
redo the argument assuming all of the spins are along the x— axis. The details are just the

same as before but with y replaced with x:
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Note the second term enters with a plus sign. Hence, only an even number of z— projections

involving the | — z) state survive:

((H+4)+ (= =)+ (= =)+ (= + ). (12)
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In this state X;X2X3 = 41 not —1 as local hidden variables would have us believe. Hence,
from a single state, we can debunk local hidden variables. We live in a world in which
X1X5X3 = +1. Hence, there is no reality in quantum mechanics independent of the proba-

bilities.



