Example: (continued)

Pick a specific $V_0(\theta)$: On the surface (at r = R): $V_0(\theta) = V_0(1 + \cos\theta)$.

Remember, we are assuming that all the charge lies on the surface of the sphere.

- a) Calculate $V(r,\theta)$ everywhere.
- b) What is the charge density on the surface?
- a) We don't need to do any integrals, because $1+\cos\theta = P_0 + P_1$.

Inside:
$$V(r,\theta) = a_0 r^0 + a_1 r^1 \cos \theta = a_0 + a_1 z$$

The boundary condition at r = R tells us: $a_0 = V_0$, and $a_1 = V_0/R$.

$$V(r,\theta) = V_0 \left(1 + \frac{r}{R} \cos \theta\right) = V_0 + \frac{V_0}{R} z$$

Note that the mean value theorem is satisfied: $V(r=0) = V_0 = V_{av}$.

There is a uniform electric field inside the sphere: $E_z = -V_0/R$.

Outside:
$$V(r,\theta) = \frac{b_0}{r} + \frac{b_1}{r^2} \cos \theta$$
, where $b_0 = RV_0$, and $b_1 = R^2V_0$.

$$V(r,\theta) = V_0 \left(\frac{R}{r} + \left(\frac{R}{r} \right)^2 \cos \theta \right)$$

I'm calling the coefficients b_0 and b_1 to distinguish them from a_0 and a_1 .

b) To find the surface charge density, use the fact that E_r is discontinuous at r = R:

$$\begin{aligned} E_r \left(\text{outside} \right) - E_r \left(\text{inside} \right) &= \frac{\sigma(\theta)}{\varepsilon_0} \\ &= -\frac{\frac{\partial V}{\partial r}}{\varepsilon_0} \bigg|_{R^+} &= -\frac{\frac{\partial V}{\partial r}}{\varepsilon_0} \bigg|_{R^-} \end{aligned}$$

$$\frac{\sigma(\theta)}{\varepsilon_0} = V_0 \left(\frac{R}{r^2} + \frac{2R^2}{r^3} \cos \theta \right) \bigg|_{r=R} - V_0 \left(\frac{\cos \theta}{R} \right) \bigg|_{r=R}$$

$$= \frac{V_0}{R} (1 + \cos \theta)$$

Note:
$$Q_{\text{tot}} = (4\pi R^2) \frac{\varepsilon_0 V_0}{R} = 4\pi \varepsilon_0 V_0 R \neq 0$$

We could predict this, because $V_{av} = V_0 \neq 0$.

Multipole Expansion (G: 3.4 and F: 6-2,4,5)

Legendre polynomials are not merely mathematical tools.

- Each $r^{-(l+1)}P_l(\cos\theta)$ term can be produced by a very simple configuration of point charges. We only consider the negative powers (i.e., the behavior at large r).
- Because P_l is associated with $r^{-(l+1)}$ radial dependence, if there are several l terms the term with smallest l dominates at large distances.

This makes for a useful approximation method.

l = 0: $V(r,\theta) = a_0/r$. This is the potential due to a single point charge. It is called a monopole.

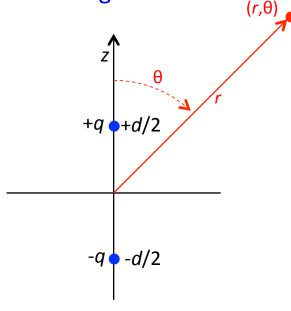
$$l = 1$$
: $V(r,\theta) = a_1 \cos\theta/r^2$.

The physical situation:

Two point charges, $\pm q$, on the z-axis at $z = \pm d/2$.

We are interested in potential far away (r >> d).

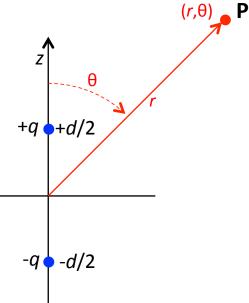
The analysis is on the next slide.



$$l = 1$$
: $V(r,\theta) = a_1 \cos\theta/r^2$.

If the charges were at the origin, they would produce $V = \pm q/(4\pi\epsilon_0 r)$, and they would cancel.

However, for r >> d, the +q is closer to point **P** (at (r,θ)) by $(d/2)\cos\theta$, and -q is farther by the same amount.



So the potential at (r,θ) is:

$$V(r,\theta) \approx \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r - \frac{d}{2}\cos\theta} - \frac{1}{r + \frac{d}{2}\cos\theta} \right)$$

$$= \frac{q}{4\pi\varepsilon_0} \left(\frac{d\cos\theta}{r^2 - \left(\frac{d}{2}\cos\theta\right)^2} \right) \approx \frac{qd}{4\pi\varepsilon_0} \frac{\cos\theta}{r^2} \equiv \frac{p}{4\pi\varepsilon_0} \frac{\cos\theta}{r^2}$$

p is called the electric dipole moment.

The orientation of the dipole is important. To deal with this, we can write p as a vector, \vec{p} , that points from -q to +q. Then, $V(r,\theta) = \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \hat{r}}{r^2} \leftarrow \frac{qd \cos\theta}{r}$

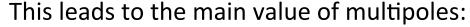
Note that in our Legendre decomposition, $a_1 = \frac{p}{4\pi\varepsilon_0}$

At large r, the dipole potential falls as $1/r^2$.

l = 2: This will give us the quadrupole moment

One can take the next step by considering two slightly displaced dipoles (rather than charges).

I won't go through it. One obtains the a_2 term.



Multipoles are a useful expansion when we are looking at the field far from a localized distribution of charge.

