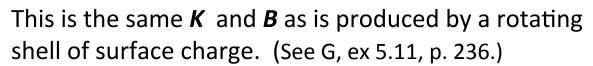
Examples:

Uniformly magnetized sphere. (G, ex. 6.1, p. 264)

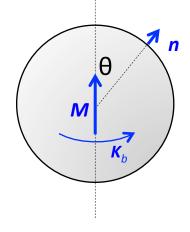
$$\vec{J}_b = \vec{\nabla} \times \vec{M} = 0$$

 $\vec{K}_b = \vec{M} \times \hat{n} = M \sin \theta \hat{\phi}$ On the surface.



$$\vec{B}_{in} = \frac{2}{3} \mu_0 \vec{M}$$
 uniform

$$\vec{B}_{\text{out}} = \text{dipole field: } \vec{M}_{\text{tot}} = \frac{4}{3}\pi R^3 \vec{M}$$

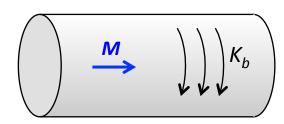


Uniformly magnetized rod.

$$\vec{J}_b = \vec{\nabla} \times \vec{M} = 0$$

$$\vec{K}_b = \vec{M}\hat{\varphi}$$

This is exactly like a solenoid.



The Field due to Free Currents (6.3.1)

Just as it was useful to define D such that $\vec{\nabla}\cdot\vec{\bf D}=\rho_{_f}$,

it is useful (even more so) to define H such that $\vec{\nabla} \times \vec{H} = \vec{J}_f$.

H is producedby free currents

Use Ampere's law: $\frac{1}{\mu_0} \vec{\nabla} \times \vec{B} = \vec{J} = \vec{J}_f + \vec{J}_b = \vec{\nabla} \times \vec{H} + \vec{\nabla} \times \vec{M}$

So,
$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$$

In the vacuum (M = 0), $B = \mu_0 H$, similar to $D = \varepsilon_0 E$.

H is more useful than D, because we have more control over J_f than ρ_f .

Nomenclature and units: (They're confusing to me ...)

- **B** is often called the magnetic flux density.
- **H** is usually called the magnetic field strength.
- M is called the magnetization.
 Units of H and M are amperes/meter.

Solving Magnetic Problems

We have boundary conditions at surfaces:

1)
$$\vec{\nabla} \times \vec{H} = 0$$
 at the surface, so: $H_{\parallel}(\text{in}) = H_{\parallel}(\text{out})$

$$\boldsymbol{\textit{B}}_{\text{out}}, \, \boldsymbol{\textit{H}}_{\text{out}}, \, \boldsymbol{\textit{M}}_{\text{out}}$$

2)
$$\vec{\nabla} \cdot \vec{B} = 0$$
 always, so: $B_{\perp}(in) = B_{\perp}(out)$

 $\boldsymbol{B}_{\text{in}}, \boldsymbol{H}_{\text{in}}, \boldsymbol{M}_{\text{in}}$

Also notice that

$$\vec{\nabla} \cdot \vec{H} + \vec{\nabla} \cdot \vec{M} = 0 \implies H_{\perp}(in) - H_{\perp}(out) = -(M_{\perp}(in) - M_{\perp}(out))$$

$$\vec{\nabla} \cdot \vec{H} \neq 0 \text{ in general.}$$

3)
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} \implies B_{\parallel \text{out}} - B_{\parallel \text{in}} = \mu_0 (\vec{K} \times \hat{n})$$

Total surface current: bound + free

In order to go farther, we must have a relationship between **B** or **H**, and **M**.

We will assume a linear response: $\vec{M} = \chi_m \vec{H}$

$$\vec{M} = \chi_m \vec{H}$$

Why do we use $\vec{M} = \chi_m \vec{H}$ instead of $\chi_m \vec{B}$?

We make magnetic fields by controlling free currents, which are the source of \boldsymbol{H} (not \boldsymbol{B}).

In the electric situation, we make electric fields by controlling voltage (total charge). Hence, E, not D.

Some more nomenclature:

We have:
$$\vec{B} = \mu_o (\vec{H} + \vec{M}) = \mu_o (1 + \chi_m) \vec{H} = \mu \vec{H}$$

and: $\vec{M} = \chi_m \vec{H}$

 $\chi_{\rm m}$ is called the magnetic susceptibility (like $\chi_{\rm e}$). μ is called permeability (unlike ϵ , permittivity).

Typical values of $\chi_{\rm m}$ are ~ $\pm 10^{-5}$ (small). Magnetic effects are small in most materials, except ferromagnets, which we'll discuss later.

End 10/28/13