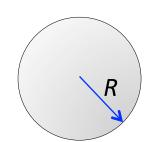
Example: (G, problem 6.18)

A permeable sphere is put in an otherwise uniform **B** field.

Use the fact that there are no free currents.

This means that $\vec{\nabla} \times \vec{H} = 0$ everywhere. So, we can write \vec{H} as the gradient of a potential: $\vec{H} = -\vec{\nabla} W$

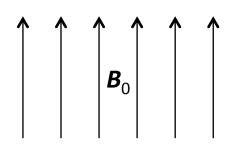


Thus, W satisfies Poisson's equation:

$$\nabla^2 W = -\vec{\nabla} \cdot \vec{H} = +\vec{\nabla} \cdot \vec{M}$$

This follows from
$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

and: $\vec{\nabla} \cdot \vec{B} = 0$



 $\vec{\nabla} \cdot \vec{M} \neq 0$ only on the surface:

- Outside: **M** = 0.
- Inside: $\mathbf{H} = \mathbf{B}/\mu$. So $\nabla \cdot \vec{M} = 0$.

Thus, we have Laplace's equation for *W*, with boundary conditions at the surface of the sphere.

Boundary conditions:

1)
$$B \to B_0 \hat{z}$$
 as $r \to \infty$
 $\vec{H} \to \frac{B_0}{\mu_0} \hat{z} \implies W \to -\frac{B_0}{\mu_0} z$

Uniform field, B_0 , at infinity.

Just like the electrostatic case.

2)
$$W_{in}(R,\theta) = W_{out}(R,\theta)$$

H is well behaved: W must be continuous.

3)
$$-\mu \frac{\partial W_{\text{in}}}{\partial r}\Big|_{R} = -\mu_{0} \frac{\partial W_{\text{out}}}{\partial r}\Big|_{R}$$

$$B_{\perp \text{in}} = B_{\perp \text{out}}$$

As before, expand W_{in} and W_{out} as sums of Legendre polynomials.

$$W_{\rm in}(r,\theta) = \sum_{\ell=0}^{\infty} A_{\ell} r^{\ell} P_{\ell}(\cos\theta)$$

$$W_{\text{out}}(r,\theta) = \sum_{\ell=0}^{\infty} A_{\ell} r^{-(\ell+1)} P_{\ell}(\cos\theta) - \frac{B_0}{\mu_0} r \cos\theta$$

Apply condition 3:
$$-\mu \sum_{\ell=0}^{\infty} \ell A_{\ell} R^{\ell-1} P_{\ell}(\cos \theta) = B_0 \cos \theta + \mu_0 \sum_{\ell=0}^{\infty} (\ell+1) B_{\ell} R^{-(\ell+2)} P_{\ell}(\cos \theta)$$

Apply condition 2:
$$\ell \neq 1$$
: $A_{\ell} = B_{\ell} R^{-(2\ell+1)}$

$$\ell = 1$$
: $A_{1} = -\frac{B_{0}}{\mu_{0}} + B_{1} R^{-3}$

$$\ell \neq 1$$
: $-\mu \ell A_{\ell} R^{\ell-1} = \mu_{0} (\ell+1) A_{\ell} R^{-(\ell+2)} \implies A_{\ell} = 0$
Combine: (eliminate B_{ℓ}) $\ell = 1$: $-\mu A_{1} = B_{0} + \mu_{0} 2A_{1} R^{-3} \implies A_{1} = \frac{-3B_{0}}{2\mu_{0} + \mu}$
So: $W_{\text{in}}(r, \theta) = -\frac{3B_{0}}{2\mu_{0} + \mu} r \cos \theta$

$$\vec{H}_{\text{in}} = -\vec{\nabla} W_{\text{in}} = \frac{3B_{0}}{2\mu_{0} + \mu} \hat{Z}$$

$$\vec{B}_{\text{in}} = \mu \vec{H}_{\text{in}} = \frac{3\mu}{2\mu_{0} + \mu} \vec{B}_{0} = \frac{3(1 + \chi_{m})}{3 + \chi_{m}} \vec{B}_{0}$$

Note: As $\chi_{\rm m}$ goes to 0, $\boldsymbol{B}_{\rm in}$ approaches $\boldsymbol{B}_{\rm 0}$. $\boldsymbol{B}_{\rm 1}$ is the field produced by the induced polarization of the sphere ($\propto R^3$).

Magnetic Shielding

It is often desirable to create a field-free region (**B** as small as possible):

- To measure small magnetic effects.
- Some apparatus does not work well in magnetic fields.

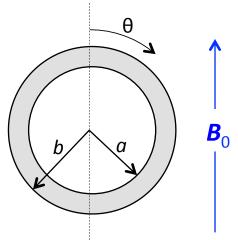
It is easy to create an electric field-free region, because the interior of any conductor (including any empty regions) works.

It turns out to be easy for $\textbf{\textit{B}}$ as well: Make a box out of large μ (>> μ_0) material. Iron works in many situations.

Consider this situation:

A hollow sphere of permeable material. We want to calculate \boldsymbol{B} for r < a.

As before, use the potential, W.



There are three regions:

We have to apply the BC's:

•
$$W_{\rm in} = W_{\rm out}$$

•
$$\mu_{\text{in}} \frac{\partial W_{\text{in}}}{\partial r} = \mu_{\text{out}} \frac{\partial W_{\text{out}}}{\partial r}$$

at both surfaces (r = a and r = b). This gives four equations in four unknowns $(\alpha_{\ell}, \beta_{\ell}, \gamma_{\ell}, \delta_{\ell})$ for each ℓ .

As with the solid sphere, only $\ell = 1$ gives non-zero solutions. The equations are:

This is easily solved. (use Mathematica) For a highly permeable $(\mu >> \mu_0)$ material:

$$r > b: W = -\frac{B_0}{\mu_0} r \cos \theta + \sum_{\ell=0}^{\infty} \alpha_{\ell} r^{-(\ell+1)} P_{\ell}(\cos \theta)$$

$$a < r < b: W = \sum_{\ell=0}^{\infty} (\beta_{\ell} r^{\ell} + \gamma_{\ell} r^{-(\ell+1)}) P_{\ell}(\cos \theta)$$

$$r < a: W = \sum_{\ell=0}^{\infty} \delta_{\ell} r^{\ell} P_{\ell}(\cos \theta)$$
Both r dependences are OK here.

I use Greek letters to avoid confusion with *a*, *b*, *etc*.

$$\alpha_{1} -b^{3}\beta_{1} -\gamma_{1} = b^{3}\frac{\beta_{0}}{\mu_{0}}$$

$$2\mu_{0}\alpha_{1} +\mu b^{3}\beta_{1} -2\mu\gamma_{1} =-b^{3}B_{0}$$

$$\alpha^{3}\beta_{1} +\gamma_{1} -\alpha^{3}\delta_{1} =0$$

$$\mu\alpha^{3}\beta_{1} -2\mu\gamma_{1} -\mu_{0}\alpha^{3}\delta_{1} =0$$

$$\alpha_1 = b^3 \frac{B_0}{\mu_0}$$
 The induced dipole moment of the sphere.

$$B_{\text{in}} = -\mu_0 \delta_1 = \frac{3}{2} \left(\frac{\mu_o}{\mu} \right) \left(\frac{1}{1 - \left(\frac{a}{b} \right)^3} \right) B_0$$
 The field for $r < a$.

The field looks like this:

