Maxwell's Equations in Matter (7.3.5)

Remember that **B** and **E** are sourced by all the current and charge, while **H** and **D** are sourced by the free currents and charges.

We just wrote Maxwell's equations using **B** and **E** only, but that is not always the most convenient notation. When there are polarizable materials, we want to take into account $\chi_{\rm B}$ and $\chi_{\rm F}$. (or, **P** and **M**).

What do Maxwell's equations look like in this case?

A complication – there is another way to produce bound current,

Because the bound charges move around if $\frac{\partial \vec{P}}{\partial t} \neq 0$.

Recall that $\rho_{\scriptscriptstyle h} = - \vec{\nabla} \cdot \vec{P}$. So, with time dependence,

$$\frac{\partial \rho_b}{\partial t} = -\frac{\partial}{\partial t} \left(\vec{\nabla} \cdot \vec{P} \right) = -\vec{\nabla} \cdot \left(\frac{\partial \vec{P}}{\partial t} \right) \equiv -\vec{\nabla} \cdot J_p$$

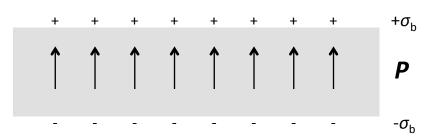
$$J_p \text{ is the current that results from } \frac{\partial \vec{P}}{\partial t}.$$

 $\vec{J}_{p} = \frac{\partial \vec{P}}{\partial t}$ is the contribution to bound current from time dependence.

There may be $\vec{\nabla} \times \vec{M}$ at the same time.

The physical picture:

$$\sigma_{\rm b} = -\vec{P} \cdot \hat{n}$$



If **P** is changing, a bound current must be flowing to charge up the surfaces.

We must include J_p in the total current flow: $\vec{J} = \vec{J}_f + \vec{\nabla} \times \vec{M} + \frac{\partial \vec{P}}{\partial t}$

$$\vec{J} = \vec{J}_f + \vec{\nabla} \times \vec{M} + \frac{\partial \vec{P}}{\partial t}$$

We can now rewrite Maxwell's equations:

1:
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \Rightarrow \vec{\nabla} \cdot \vec{E} = \frac{1}{\varepsilon_0} (\rho_f - \vec{\nabla} \cdot \vec{P}) \Rightarrow \vec{\nabla} \cdot \vec{D} = \rho_f$$
 (not changed by time dependence)

$$\mathbf{2}: \ \vec{\nabla} \cdot \vec{B} = \mathbf{0}$$

2:
$$\nabla \cdot \vec{B} = 0$$

3: $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ No ρ or \vec{J} , so no changes here.

4:
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \left(\vec{J}_f + \vec{\nabla} \times \vec{M} + \frac{\partial \vec{P}}{\partial t} \right) + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Use: $\vec{D} = \vec{P} + \varepsilon_0 \vec{E}$, $\vec{J}_f = \vec{\nabla} \times \vec{H}$, and $\vec{B} = \mu_0 (\vec{H} + \vec{M})$ to obtain:

$$\vec{\nabla} \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

This is useful if you know:

$$P = \varepsilon_0 \chi_E E$$
 and $M = \chi_M H$.

Boundary Conditions in Matter (7.3.6)

Each of Maxwell's equations gives a boundary condition at an interface:

out
$$\sigma_{
m f}$$
 and $K_{
m f}$ on surface

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \Longrightarrow B_{\perp}(\text{out}) = B_{\perp}(\text{in})$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\Rightarrow E_{\parallel}(\text{out}) = E_{\parallel}(\text{in})$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \Rightarrow E_{\parallel}(\text{out}) = E_{\parallel}(\text{in}) \quad \text{because } \frac{\partial \vec{B}}{\partial t} \text{ is finite.}$$

$$\vec{\nabla} \cdot \vec{D} = \rho_f \qquad \Rightarrow D_{\perp}(\text{out}) = D_{\perp}(\text{in}) \quad \text{if } \sigma_f = 0.$$

$$\vec{\nabla} \cdot \vec{D} = \rho_f$$

$$\Rightarrow D_{\perp}(out) = D_{\perp}(in)$$

if
$$\sigma_f = 0$$
.

$$\vec{\nabla} \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t} \implies H_{\parallel}(\text{out}) = H_{\parallel}(\text{in}) \quad \text{if } K_f = 0.$$

if
$$K_f = 0$$
.

Neither $\frac{\partial \vec{E}}{\partial \vec{L}}$, nor $\frac{\partial \vec{B}}{\partial \vec{L}}$ affects surface boundary conditions.

Example: Meissner effect and magnetic levitation by a superconductor

You have a homework problem to show that the current must be on the surface of a superconductor. This is a consequence of the fact that B = 0 inside a superconductor (the Meissner effect). It's a QM effect, so I can't derive it here. However, there is a phenomenological description that is very interesting.

We have learned that the vector potential, A, is not uniquely determined:

$$\vec{B} = \vec{\nabla} \times \vec{A} \implies \vec{A}' = \vec{A} + \vec{\nabla} \lambda$$
 also works. This is called "gauge invariance".

However, Fritz and Heinz London discovered (1935) that the Meissner effect requires that **A** be fixed to a specific value:

This loss of gauge invariance is another example of "spontaneous symmetry breaking" that I mentioned earlier in the semester (ferromagnetism).

Let's see how this gives the Meissner effect.