Review problems:

- Chapter 1: 30-34, 38-40, 53-58
- Chapter 2: 2, 4-8, 10, 11, 14, 16, 17, 20, 22-24, 31, 33-36, 41, 45
- Chapter 3: 3, 6, 8, 13, 17, 18, 20, 22, 24, 25, 31, 32, 33
- Chapter 4: 4, 5, 6, 9, 10, 11, 15, 18, 19, 20, 22, 31, 32, 33 More difficult: 24, 25, 29, 36
- Chapter 5: 4, 5, 6, 8, 9, 10, 13, 14, 15, 16, 22, 23, 24, 25, 26, 35, 47, 58
- Chapter 6: 1, 3, 5, 7, 8, 9, 12, 18, 23
- Chapter 7: 1, 2, 5-10, 12, 13, 15-18, 20-22, 24-29, 31, 37, 42, 43, 48-51, 53, 54, 58 More difficult: 19, 23, 30, 32, 34, 38

P435 Course Summary

Selected Griffiths problems in parentheses.

1. Electric field:

Divergence. Charge density. Gauss' law. Electric potential. Electrostatic energy.

You should know how to:

Calculate the charge density. (2.9)

Apply Gauss' law. (2.16)

Calculate potential differences (e.g., do line integrals). (2.44)

Calculate fluxes (surface integrals). (2.10)

Calculate the field energy. (2.34)

2. Conductors

Equipotential surfaces. Induced charge. Capacitors. Method of images.

You should know how to:

Calculate capacitance. (2.39, 2.40)

Use images to solve (simple) problems. (3.34)

3. Laplace's equation:

Separation of variables

Boundary conditions: V or E at a surface. Multipole expansion.

Cartesian, cylindrical, spherical coordinates

You should know how to:

solve in various coordinate systems (3.39)

apply boundary conditions (3.37)

solve problems with electric (and magnetic) dipoles (3.31)

4. Electric fields in matter:

Polarization. E, D, and P. Linear dielectrics. Boundary conditions. Field energy.

You should know how to:

Calculate bound charges (4.10)

Calculate the force and torque on a dipole (4.6, 4.9)

Apply the boundary Conditions (4.16, 4.18 4.22)

Calculate the field energy and forces (4.26, section 4.4.4)

5. Magnetic fields:

Lorentz force. Biot-Savart and Ampere's laws. Vector potential.

You should know how to:

Calculate forces on moving charges and current carrying wires (5.40-5.42)

Calculate the field produced by a current (5.45)

Calculate the vector potential, given the current (5.22, 5.23)

6. Magnetic fields in matter:

Magnetization. B, H, and M. Bound currents. Boundary conditions.

You should know how to:

Calculate forces on magnetic dipoles (and current loops) (6.1, 6.3)

Calculate the bound currents and field of a magnetized object (6.7-6.9)

Apply boundary conditions (6.17, 6.18)

7. Time dependence:

Ohm's law. Electromotive force. Faraday's law. Inductance. Magnetic energy.

Maxwell's equations in vacuum and in matter

You should know how to:

Solve RC, LC, and RLC circuits (7.2, 7.3, 7.29)

Calculate inductance and field energy (7.26, 7.30)

Calculate induced currents (7.12)