Mid3 Review Problems

- 1) Two concentric solenoids are arranged to give a magnetic field of $\vec{B}(a < s < b) = B_0 \hat{z}$, $\vec{B}(s > b) = 0$, $\vec{B}(s < a) = 0$.
 - a) Find $\vec{K}(s=a)$.
 - b) Find the outward pressure on the s=a surface using $\mathcal{P}_{\text{out}}=\hat{s}\cdot\vec{K}\times\vec{B}_{\text{other}}$
 - c) Find $\vec{A}(s)$ in the regions s < a, a < s < b, s > b and show that $\vec{A}(s)$ is continuous at a and b. Confirm that your $\vec{A}(s)$ give the magnetic fields in all three regions.
 - d) Use $\frac{\partial \vec{A}}{\partial s} \frac{\partial \vec{A}}{\partial s} = -\mu_0 \vec{K}(s = b)$ to find the surface current carried by the s = b solenoid.