Homework #10

- 1) An infinite wire which passes through the origin and lies parallel to the z axis carries a current I A magnetic material with $\mu=\kappa\mu_0$ is present in the region s>a. Answer all parts of this problem in terms of a,I,κ , and μ_0 .
 - a) Find $\vec{H}(s)$ and $\vec{B}(s)$ in all regions.
 - b) Find the bound currents \vec{K}_b and \vec{J}_b everywhere
 - c) Find the total enclosed current (free and bound) within a circle with s > a and check that your $\vec{B}(s > a)$ is consistent with Ampere's law with this current.
- 2) Consider an infinitely long solenoid of radius b. A magnetic material exists from a < s < b. The magnetization is of the form $\vec{M} = M_0 \hat{z}$ in the region a < s < b. Air is everywhere else. We define 3 regions: $\#1\ r < a$, $\#2\ a < r < b$ and $\#3\ b < r$. The only free current is a free surface current $\vec{K} = K\hat{\phi}$ at radius b. At s = b there is also a bound surface current $\vec{K} = K'$ $\hat{\phi}$. Another bound surface current exists at s = a. Answer all parts of this problem in terms of a,b, K, K', and physical constants such as μ_0
 - a) Find \vec{M} in terms of a,b,K,K', and physical constants such as μ_0 .
 - b) Find $\vec{K}(s=a)$
 - c) Find $\vec{B}_{\#3}, \vec{B}_{\#2}$, and $\vec{B}_{\#1}$ in terms of K and K'.
 - d) Find $A_{\#3}(s), A_{\#2}(s)$, and $A_{\#1}(s)$ in terms of K, K' using the $\oint \vec{A} \cdot d\vec{\ell} = \int \vec{B} \cdot d\vec{a}$ method.
 - e) Show that A is continuous at r = a and r = b
 - f) Verify the discontinuity BC at the boundary s=a

$$\frac{1}{\mu_o} \left(\frac{\partial \vec{A}_>}{\partial n} \Big|_{\text{interface}} - \frac{\partial \vec{A}_<}{\partial n} \Big|_{\text{interface}} \right) = - \left(\vec{K}_b + \vec{K}_f \right)$$

- 3) Consider a permanent magnet in the shape of a long cylinder of radius R with a position dependent magnetization of $\vec{M} = \beta s \hat{z}$ that only exists in the magnet. There are no free currents anywhere.
 - a) Compute the bound current density (\vec{J}) and all bound surface currents (\vec{K}) .
 - b) Use Ampere's law to compute \vec{B} everywhere and show your answer implies $\vec{H}=0$ everywhere . Hint—assume that $\vec{B}=0$ outside of the magnet and place one side of your Ampere loop outside the magnet.
 - c) Verify the boundary condition $\vec{B}_{>} \vec{B}_{<} = \mu_o \left(\vec{K}_{free} + \vec{K}_{bound} \right) \times \hat{s}$ at s = R.
- 4) The magnetic field of a spherical permanent magnet of radius R with $\vec{M} = M_0 \hat{z}$ and no free currents is given by: $\vec{B}(r < R) = \frac{2\mu_0 M_0 \hat{z}}{3}$ and $\vec{B}(r > R) = \frac{\mu_0 M_0 R^3}{3r^3} \left(2\cos\theta \ \hat{r} + \sin\theta \ \hat{\theta}\right)$.
 - a) Show that these magnetic fields satisfy the boundary condition: $\vec{B}_{>} \vec{B}_{<} = \mu_0 \vec{K} \times \hat{r}$.
 - b) Compute $\vec{H}_{>} \equiv \vec{H}(R+\delta,\theta)$ and $\vec{H}_{<} \equiv \vec{H}(R-\delta,\theta)$ ($\delta \to 0$) and comment on which components of \vec{H} are continuous across the boundary at r=R. Explain why the tangential \vec{H} component is continuous if there are no free surface currents using the H form of Ampere's law. Which \vec{B} component is continuous: normal or tangential?
 - c) Find $\int_S \vec{B} \cdot d\vec{a}$ over a surface bounded by a "cap" consisting of the northern hemisphere of spherical shell of radius a > R and a "plate" consisting of the circular disk of radius a in the x-y plane. You should get $\int_S \vec{B} \cdot d\vec{a} = 0$ since there are no magnetic charges but I want explicit integrals using the magnetic field forms given in the problem.

