Homework #8

- 1) A current carrying coil is in the form of an n-sided polygon which is inscribed within a circle of radius a so that all n corners lie on the circle. Find the ratio of the B-field in the center of the polygon to the B-field in the center of a circular coil of radius a carrying the same current. Show the fields agree in the limit $n \to \infty$.
- 2) Consider an infinite current sheet on the z=0 plane which carries a uniform surface current : $\vec{K}=K_0\hat{y}$. Work out the magnetic field in the z>0 and z<0 region using the Biot-Savart Law rather than Ampere's Law.
- 3) Using the Biot-Savart Law to compute \vec{B} at the origin for an infinite solenoid of radius R centered along the z-axis carrying a surface current $\vec{K} = K\hat{\phi}$. Show that you get $\vec{B} = \mu_0 K \hat{z}$ which is the same as the Ampere's Law result obtained in Lecture using the assumption: $\vec{B}(s > R) = \vec{0}$. Hint -- the relevant integral can be found in http://integrals.wolfram.com/.
- 4) Find the pressure on a patch of surface current that creates a B-field of $\vec{B} = B_0 \hat{z}$ on the inside of an infinite, air core solenoid. Check your calculation by comparing \vec{B}_{other} on either side of the surface current patch and specify the direction of the pressure. Remember when computing the force on a small patch it is important to use \vec{B}_{other} which is the magnetic full magnetic field minus the part of the magnetic field due to the surface current passing through the patch itself. A useful magnetic force expression for surface currents is $d\vec{F} = \vec{K} \times \vec{B}_{\text{other}} da$ and the B-field for a current plane can be written as $\vec{B}_{>,<} = \pm \frac{\mu_0 \vec{K} \times \hat{\eta}}{2}$. Note the analogy between the pressure of this magnetic field and the pressure due to an electrical field on a conductor.

- 5) Consider an azimuthally directed surface current of the form $\vec{K} \propto \hat{\phi}$ on a sphere of radius R. This is a generalization of Spinning Ball of Charge w/ Magnetic Scalar Potential example worked out in lecture. You design the current such that $\vec{B} = -\vec{\nabla} V_{mag}$ where $V_{mag}(r < R) = Ar^2(3\cos^2\theta 1)$ and $V_{mag}(r > R) = D \ r^{-3}(3\cos^2\theta 1)$.
- (a) Write $\vec{B}(r < R)$ and $\vec{B}(r > R)$ in terms of A, D, r, and θ .
- (b) The $\vec{B}_{>}-\vec{B}_{<}=\mu_{_{\! 0}}\vec{K}\times\hat{\eta}\,$ BC implies that that the radial component of the magnetic field is continuous at r=R. Use this to find the constant D in terms of A and R.
- (c) Find the required current \vec{K} using the discontinuity in the $\hat{\theta}$ component of $\vec{B}(r=R)$ at r=R implied by the BC in terms of A,R,θ and physical constants. Use a sketch of the currents and fields to argue that \vec{K} is distributed such that the B-field inside the sphere for a point on the x-y plane is radially outwards for A>0 and disappears at the origin.