Additional Final Study Problems

Consider a spherical permanent magnet of radius R which carries a magnetization of $\vec{M} = M_0 \hat{z}$. Write all answers in terms of R, M_0 , physical constants,

- (a) Find the bound currents \vec{K}_b and \vec{J}_b . $\vec{K}_b = M_0 \sin \theta \ \hat{\phi}$
- (b) Compute the dipole moment \vec{m} using $\vec{m} = \hat{z} \int \pi (R \sin \theta)^2 dl \left[\vec{m} = \frac{4\pi R^3}{3} M_0 \hat{z} \right]$
- (c) The scalar magnetic potential is of the form $V' = \left(ar + \frac{b}{r^2}\right)\cos\theta$. Find a and b using magnetic discontinuity equation $\vec{B}_{>} \vec{B}_{<} = \mu_0 \vec{K} \times \hat{r}$. $b = \frac{\mu_0 M_0 R^3}{3}$
- (d) Is your \vec{m} result of part (b) and your \vec{b} expression from part (c) consistent with $V_{>}' = \frac{\mu_0 \vec{m} \cdot \hat{r}}{4\pi r^2}$?
- (e) Use $\vec{A}_{>} = \frac{\mu_0 \vec{m} \times \hat{r}}{4\pi r^2}$ and $\vec{B} = \vec{\nabla} \times \vec{A}$ to find $\vec{B}_{>}$ and compare to the $\vec{B}_{>}$ expression you obtained during part (c). Recall $\vec{\nabla} \times \vec{A} = \frac{\hat{r}}{r \sin \theta} \partial_{\theta} (r \sin A_{\phi}) \frac{\hat{\theta}}{r} \partial_{r} (r A_{\phi})$.
- (f) Find $\vec{B}(r < R)$ in Cartesian coordinates. $\vec{B}_{<} = \frac{2\mu_0 M_0}{3} \hat{z}$
- (g) Now imagine drilling a small, cylindrical hole through the spherical, permanent magnet such that $\vec{M}(s < a) = 0$ where a << R. Find \vec{B} at the origin in terms of M_0 by superimposing the field that you found in part (e) with the solenoidal field around the cylindrical hole. $|\vec{B}(0)| = -\frac{\mu_0 M_0}{3} \hat{z}|$