Mid 3 Review

Consider the case of an infinitely long cylinder of radius R with a current density $\vec{J}\left(s < R\right) = J_0\hat{z}$. We add a cancelling surface current $\vec{K}(s = R) = -K_0\hat{z}$ with K_0 adjusted so that $\vec{B}\left(s > R\right) = 0$. Write all answers to this problem in terms of K_0 , R, cylindrical coordinates and unit vectors, and physical and mathematical constants as needed.

- a) Find J_0 in terms of K_0 .
- b) Find the outward, magnetic pressure on the s=R surface using $\mathcal{P}_{\text{out}}=\hat{s}\cdot\vec{K}\times\vec{B}_{\text{other}}$ where \vec{B}_{other} excludes the field due to $\vec{K}=-K_0\hat{z}$ itself. Hint I would compute \vec{B}_{other} using the region just outside of cylinder where $\vec{B}=0$. Recall a current plane produces a field of $\vec{B}_{>}=+\frac{\mu_0\vec{K}\times\hat{\eta}}{2}$, $\vec{B}_{<}=-\frac{\mu_0\vec{K}\times\hat{\eta}}{2}$.