Homework #2

- 1) A charge q is placed a distance a above the center of a square with sides of 2a.
 - a) Compute the electric flux Φ by "brute force" integration $\Phi = \int\limits_{\text{square}} \vec{E} \cdot d\vec{a}$. Hint -- the relevant integrals can be found in http://integrals.wolfram.com/.
 - b) Check your answer by using a simple Gauss's Law argument based on putting a charge in the center of a cube.
- 2) Consider the electric field given by

$$\vec{E} = \frac{\beta x}{\varepsilon_0} \hat{x} \text{ for } |\mathbf{x}| < \frac{W}{2}; \ \vec{E} = \frac{W\beta}{2\varepsilon_0} \hat{x} \text{ for } x > \frac{W}{2} \text{ and } \vec{E} = -\frac{W\beta}{2\varepsilon_0} \hat{x} \text{ for } x < -\frac{W}{2}$$

- a) Find $\rho(\vec{r})$ everywhere using Gauss's Law in differential form $\varepsilon_0 \vec{\nabla} \cdot \vec{E} = \rho$.
- b) Obtain this form for \vec{E} using superposition and the Gauss's Law expression $\vec{E}=\pm\frac{\sigma}{2\varepsilon_0}\hat{x}$ for an infinitely wide slab of charge in the y-z plane. Hint-- what is the effective σ for a charged slab with a volume charge density ρ and a thickness T.
- 3) In Cartesian coordinates it is easy to see that $\vec{\nabla} x = \hat{x}$ and $\vec{\nabla} \cdot (x\hat{x}) = 1$
 - a) Show that the \hat{x} unit vector can be written in terms of the cylindrical coordinate unit vector as $\hat{x} = \cos\phi \ \hat{s} \ -\sin\phi \ \hat{\phi}$ using trigonometry.
 - b) Use the gradient expression in cylindrical coordinates and the result of part (a) to verify that $\vec{\nabla} x = \vec{\nabla} \left(s \cos \phi \right) = \hat{x}$
 - c) Use the divergence expression in cylindrical coordinates to verify that $\vec{\nabla} \cdot (x\hat{x}) = \vec{\nabla} \cdot (s\cos\phi\hat{x}) = \vec{\nabla} \cdot (s\cos\phi\hat{x$
 - 4. Consider an arbitrary, spherically symmetric charge distribution $\rho(r)$.
 - (a) Obtain a general form for \vec{E} , the electric field due to this charge distribution in terms of an integral over $\rho(r')$ using Gauss's Law.
 - (b) Check your answer to part (a) by taking the divergence of the expression you obtained in part (a) and showing that $\varepsilon_0 \vec{\nabla} \cdot \vec{E} = \rho(r)$. This statement of the Fundamental Theorem of Calculus might be helpful:

$$\frac{\partial}{\partial x} \int_{\text{const}}^{x} f(x') \, dx' = f(x)$$