Homework #3

- 1. Griffiths problem 2.21
- 2. Griffiths problem 2.35
- 3. Calculate the energy stored in charged sphere of radius R with a charge density which grows as $\rho(r) \propto r^n$ up to R and is zero for r > R. Let Q be the total charge contained in the charged sphere. Show that U approaches $U \to Q^2/(8\pi\varepsilon_0 R)$ in the limit $n \to \infty$ and explain why it approaches the stored energy for a spherical shell. A quick sketch of $\rho(r) \propto r^n$ for various n should make it clear why this happens.
- 4. Consider an electric field of the form $\vec{E} = \beta (z \ z \ x + y)$
 - a. Show that $\vec{\nabla} \times \vec{E} = 0$ so a potential can be found
 - b. Compute $V(x, y, z) V(0, 0, 0) = -\int \vec{E} \cdot d\vec{\ell}$ by integrating along a straight-line path from $\begin{pmatrix} 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x & y & z \end{pmatrix}$
 - c. Use an alternative path to compute V(x, y, z) V(0,0,0).
- 5. Consider the electrical field $\vec{E} = -\beta y \hat{x} + \beta x \hat{y}$ which approximates the electrical field on accelerating particles by a betatron. (The betatron invented at the U of I -- is displayed near 151 Loomis.)
 - a. By computing the curl, show that this field cannot be created by a static charge distribution.
 - b. Compute $\oint \vec{E} \cdot d\vec{\ell}$ around a counter-clockwise rectangular path with opposite corners at $\begin{pmatrix} 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} a & b \end{pmatrix}$ and show that your answer is consistent with $\oint \vec{E} \cdot d\vec{\ell} = \iint \vec{\nabla} \times \vec{E} \cdot \hat{z} \; dx dy$
 - c. Now find the counter-clockwise $\oint \vec{E} \cdot d\vec{\ell}$ around a circle of radius R centered at the origin. This is most easily done by parameterizing the path as $\vec{r}_{nath} = (R\cos\phi \ R\sin\phi)$.
 - d. Show that you get the same $\oint \vec{E} \cdot d\vec{\ell}$ even if the circle center is not centered on the origin and argue from the Stokes' theorem why this must be true for this field.